Information Processing Analogy – Big Picture

Effective instruction is effective because it addresses the key elements of how the brain processes information. I share an analogy to help adults (parents and educators) fully appreciate this.

Information Processing Model

Below is a model of information processing first introduced to me in a master’s course at UCONN.

Here is a summary of what is shown in the model.

  1. Human senses are bombarded by external stimuli: smells, images, sounds, textures and flavors.
  2. We have a filter that allows only some of these stimuli in. We focus on the ones that are most interesting or relevant to us.
  3. Our working memory works to make sense of the stimuli and to package it for storage. It is like a computer, if there is too much going on, working memory will buffer.
  4. The information will be stored in long term memory.
    • Either it will be dropped off in some random location and our brain will forget the location (like losing our keys)
    • Or it will be stored in a file cabinet in a drawer with other information just like it. This information is easier to find.

Analogy to Classroom Learning

Here is an analogy to what happens during school instruction. You are driving down the street, like the one shown below.

There is a lot of visual stimuli. The priority is for you to pay attention to the arrows for the lanes, the red light and the cars in front of you. You have to process your intended direction and choose the lane.

Other present stimuli may be filtered out because it is not pertinent to your task: a car parked off to the right, the herbie curbies (trash bins), the little white arrows at the bottom of the photo. There is extraneous info you may allow to pass through your filter because it catches your eye: the ladder on the right or the cloud formation in the middle.

Maybe you are anxious because you are running late or had a bad experience that you are mulling over. This is using up band width in your working memory. Maybe you are a relatively new driver and simple driving tasks eat up the bandwidth as well.

Impact on Students

For students with a disability that impacts processing or attention, the task demands described above are even more challenging. A student with ADHD has a filter that is less effective. One with autism (a rule follower type) may not understand social settings such as a driver that will run a red light that just turned red. Another with visual processing issues may struggle with picking out the turn arrows. Their brain may start to buffer, like a computer.

What is Buffering? — Causes and How to Stop It - Dignited

Specific Disabilities

Effective instruction would address these challenges proactively. Here is a video regarding learning disabilities (LD) that summarizes the need in general for teachers to be highly responsive to student needs. This link is for a great video that helps makes sense of what autism in terms of how stimuli can be received by those with autism (look for the street scene). Another is a video of a researcher explaining how ADHD responds to sensory input (he gets to a scenario that shows how impulsiveness can be a factor).

What to Do

To address these challenges:

  • Reduce the amount of information presented in a lesson segment, i.e., chunk the lesson.
  • Use color, e.g. highlighters – this helps students see the different parts of a problem
  • Use hands on and visual representations in lieu of words – words are symbolic and abstract, start with forms of information easier to process.
  • Connect information to prior knowledge or make it relevant.
  • Scaffold the work to provide supports for unpacking the concept, following the steps, or identifying the parts.
  • Relevant situations – learn by doing. Have the instructional setting mirror the real life setting as much as possible. Better yet, conduct instruction in the real life setting.

Graphic better than FOIL

Typically, multiplying two binomials is presented with FOIL. This approach is problematic for two reasons: it is a mneumonic for a purely symbolic representation and it is also an isolated strategy that does not connect well to prior knowledge.

FOIL

Another approach is to use a graphic organizer and context. In the photo below I presented students with the scenario of expanding my patio (under the guise of being so popular I needed more space to entertain). The top figure shows the expansion of length alone. This allows for a simple distributive problem and (and eventually factoring out the GCF). The bottom figure shows an expansion of length and width which leads to multiplying binomials. Students would see that the area of the new patio is computed with (6 + x)(5 + x) which is the same as finding the area of each individual rectangle (presented in photo at the bottom). (This is useful for factoring trinomials as well.)

IMG_20110118_122521

This scaffolded approach is effective because it presents the concept in a different representation, it connects to prior knowledge of distributive property (useful for memory storage) and it is connected to prior knowledge of area of rectangles so it has meaning.

Subsequent problems would use the boxes as a graphic organizer (see photo below).

multiply binomials