Tag Archives: scaffolding

IXL.com – Excellent Tool for Differentiation

IXL.com is a site that provides online practice for math (and other topics). It has a hidden feature that allows for very effective differentiation. This can be highly useful in a general ed math class and in settings for special education services. This includes special ed settings with students working on a wide ranges of math topics, for algebra students who missed a lot of class or enter the course with major gaps, and for the general algebra population to meet the range of needs. IXL can be used before the lesson or after, for intervention.


By way of example, assume you have a student or students working on graphing a linear function using an XY table (image below). Using a task analysis approach, this topic can be broken up into smaller parts: completing an XY table, plotting points and drawing the line, interpreting what all of this means. I will focus on the first two in this post.


IXL has math content for preschool up to precalculus. For the topic of graphing (shown above) many of the steps are covered in earlier grades. For example, plotting points is covered in 3rd grade (level E), 4th grade (level F), and 6th grade (Level H). To prepare students for the graphing linear functions, they can be provided the plotting points assignments below to review or fill in gaps.

The tables used to graph are covered starting in 2nd grade (level D) and up through 6th grade (level H). These can also be assigned to review and fill in gaps.

When it is time to teach the lesson on graphing a linear function, IXL scaffolds all of the steps. For example, the image below in the top left keeps the rule simple. The top right image below shows that the students now have an equation in lieu of a “rule.” The bottom image below shows no table. All 3 focus on only positive values for x and y before getting into negatives.

The default setting on IXL is to show the actual grade level for each problem. I did not want my high school students know they were working on 3rd grade math so I made use of a feature on IXL to hide the grade levels (below), which is why you see Level D as opposed to Grade 2.

Tagged , , , , , , , ,

Handouts for Multiplication and Unit Rate Word Problems

Here are excerpts from two handouts I use to help students understand how to write multiplication and rate word problems as math expressions. The image, below at top, shows a problem from the first handout I present. The students draw a single group represented by the rate expression (for elementary school word problems the term rate is not used). The image at the bottom is the same problem with scaffolding to write the multiplication problem. I find that students working on rates and slope in middle school, high school, and even in college struggle with this topic. I use this approach as part of a review of prerequisite skills before getting into rate and slope.

Tagged , , , , , , , ,

Slippery Slope – 3rd Grade Multiplication Word Problems to Slope in Algebra

Top left is a scaffolding I use to help students learn to solve math problems using multiplication (3rd grade). The situations are typically rate problems (e.g., 5 pumpkins per plant or $2 per slice of pizza) although the term “rate” is not used yet. The same concept of rate plays out in high school with slope of a line, applied to real life situations (top right).

These types of problems start in 3rd grade (below, top left), play out in 6th grade (below, top right), into 8th grade (below, middle), and into high school algebra and statistics (below, bottom). I referenced this connection previously regarding word problems and dominoes. This highlights how crucial it is that strategically selected gaps in a student’s math education be addressed in context of long range planning.

Tagged , , , , , , , ,

Simplifying not so Simple Equation Solving

Several special ed teachers identified solving multi-step equations as the most challenging math topic to teach in middle school math. Here is my approach to teaching multi-step equations like 3m + 4m + 1 = 15. .

First, I use a task analysis approach to break down the math topic like we cut up a hotdog for a baby in a high chair. MOST of the steps involved are prior knowledge or prerequisites skills. I present these in a Do Now (warm up, bell ringer, initiation) – see image below. This allows me to fill in the gaps and to lay the foundation for the lesson. The prerequisite skills include simplifying expressions and solving 2 step equations. I also present meaning for the equation with a relevant real life problem that is modeled by this equation. By attempting the walkathon problem without the “mathy” approach, the students will more likely understand the equation and why they add 3m and 4m.

After reviewing the Do Now I use Graspable Math, which is a free online application that allows users to enter their own expressions and equations. These can be manually simplified and solved by moving parts around. Here is a tutorial on how to do this. This allows them to manually work with the simplifying and the equation before working on the handout, in a concrete-representational-abstract approach.

This is followed by a scaffolded handout with the use of color coding. I have student work on the first step in isolation as that is the new step (the other steps are prior knowledge and were addressed in the Do Now). This avoids all the work on the other steps that can result in sensory overload and allows me to address mistakes in the new content immediately.

This handout can have the equations removed and be used as a blank template to follow. In turn this would be followed with regular solving worksheets.

Tagged , , , , ,

Learning Math – The Patting Head and Rubbing Belly Phenomena

In education, math especially, there exist a learning situation I call the patting head and rubbing belly phenomena. In this phenomena students are presented a math problem that consists of several steps they know how to do and then maybe one or two additional steps that are new. Adding the additional step is like adding the task of patting your head while you rub you belly. The additional math step seems so simple, but attempting it simultaneously with an additional task can make the entire effort exceedingly challenging. A related scenario is generalization to different settings, but that is different. This is true for all types of math, whether it is the general curriculum or life skills/consumer math.

I have written about how we cut up a hotdog for a baby in a highchair and that we could do the same for math topics using a task analysis and chunking approach. Related to this, I recommended that support class be used not to backfill gaps but to address prerequisite skills for upcoming or current math topics covered in a general ed math class.

This phenomena plays out in life skills math or consumer math in a stealthy manner because the steps or tasks seem so simple. For example, many of us have worked with a child or student who was learning to count money. When learning about a nickel or a quarter, the coin name and value are easily identified. Once both are introduced, many students confuse the two and may even freeze while attempting the work with the coins.

There is an ABA based process for addressing this using a task analysis and chaining in which steps are worked on in isolation before connecting (chaining) the steps together (and not all of them at once until the end). One related strategy to help implement this approach is through scaffolded handouts in which the steps are enumerated and the structure of the handout isolates the tasks. I have used this approach for 1 to 1 correspondence up to AP Statistics (see below).

When working out a draft of an IEP, I suggest having the task analysis and chaining explicitly identified in the accommodations page and ask for an example of what this looks like (using an example math topic).

Tagged , , , ,

Multiplying and Carrying a Tens Digit

Carrying the TENS digit in a multiplication problem is a sticking point for many students. To address this, I use a task analysis approach to zero in on the step of identifying the product for the ONES as a prelude to carrying.

In the example below, 5 and 4 are in the ONES place and the product is 20. The task analysis steps involved:

  • compute the product
  • identify the digits in the product
  • identify the digit in the ONES
  • identify the digit in the TENS
  • Understand that the TENS digit must be carried to the TENS column

By creating a place holder for the product and scaffolding it to differentiate between the TENS and the ONES, the student can visualize the product. This reduces the demand placed on working memory. Once mastery with the place holder is demonstrated, it can be faded (and used as necessary as part of corrective feedback).

NOTE: I started this mini-lesson for a student with ADHD by having him warm up with problems without carrying. Also, extra line below the 60 and 20 are used for multiplying by 2 digit numbers (next in the sequence).

Tagged , , , , , , ,

Sales Price Entry Point

A pseudo- concrete representation of a sales price problem is shown below. This is what I use as an entry point for teaching these problems.

  • The entire shape represents the total price of $80. This is 100%, which in student language is “the whole thing.”

  • The discount rate is 25%. Cut with scissors to lop off the 25% which also lops off $20, which is the actual discount. Explain to the student that this 25% is part of the “whole thing.”

  • What remains is 75% or $60. This is the “new price” which is called the sales price.


Tagged , , , , , , ,

Introduction to Solving Equations

I introduce solving equations by building off of the visual presentation used to introduce equations. The two photos below show an example of handouts I use. Below these two photos I offer an explanation of how I use these handouts.

intro to solving equations

2019-01-18 22.16.51-2

First I develop an understanding of a balanced equation vis-a-vis an unbalance equation using the seesaw representation.intro to equations balanced vs unbalanced

I then explain that the same number of guys must be removed from both sides to keep the seesaw balanced.

intro to solving equations balance and unbalanced

I then apply the subtraction shown above to show how the box (containing an unknown number of guys) is isolated. I explain that the isolated box represents a solution and that getting the box by itself is called solving.

intro to solving equations adding

I use a scaffolded handout to flesh out the “mathy” steps. This would be followed by a regular worksheet.

solving 1 step equations add scaffolded

I extend the solving method using division when there are multiple boxes. I introduce the division by explaining how dividing a Snickers bar results in 2 equal parts. When the boxes are divided I explain both boxes have the same number of guys.intro to solving equations multiplying

The students are then provided a scaffolded handout followed by a regular worksheet.solving 1 step equations multiply scaffolded

Tagged , , , , , , , , , ,

One More or One Less Scaffolding


The photo above shows a screen for a hundreds table was shared by one of my students in a Math for Children graduate course. She found it on Pinterest for use a class presentation. I love this idea and came up with some revisions I think can make it more effective. It seems to me that this screen may be too busy with 4 different numbers showing. Additionally, the view of the other numbers outside the screen could be distracting.

Below are a couple revisions I would suggest.

one-less-hundreds-table-screen one-more-hundreds-table-screen

Tagged , , , ,

Making Slope Less Complicated


Slope is the rate of change associated with a line. This is a challenging topic especially when presented in the context of a real life application like the one shown in the photo. The graphed function has different sections each with a respective slope.

One aspect of slope problems that is challenging is the different contexts of the numbers:

  • The yellow numbers represent time
  • The orange numbers represent altitude
  • The pink numbers represent the slopes of the lines (the one on the far right is missing a negative)

Before having students find or compute slope I present the problem as shown in the photo above and discuss the meaning of the different numbers. What I find is that students get the different numbers confused and teachers often overlook this challenge. This approach is part of a task analysis approach in which the math topic is broken into smaller, manageable parts for the student to consume. Once the different types of numbers are established for the students we can focus on actually computing and interpreting the slope.

This instructional strategy is useful for all grade levels and all math topics.


Tagged , , ,
%d bloggers like this: