Tag Archives: scaffolding

One More or One Less Scaffolding

more-less-screen-for-hundreds-table

The photo above shows a screen for a hundreds table was shared by one of my students in a Math for Children graduate course. She found it on Pinterest for use a class presentation. I love this idea and came up with some revisions I think can make it more effective. It seems to me that this screen may be too busy with 4 different numbers showing. Additionally, the view of the other numbers outside the screen could be distracting.

Below are a couple revisions I would suggest.

one-less-hundreds-table-screen one-more-hundreds-table-screen

Advertisements
Tagged , , , ,

Making Slope Less Complicated

slope-graph-real-life-application

Slope is the rate of change associated with a line. This is a challenging topic especially when presented in the context of a real life application like the one shown in the photo. The graphed function has different sections each with a respective slope.

One aspect of slope problems that is challenging is the different contexts of the numbers:

  • The yellow numbers represent time
  • The orange numbers represent altitude
  • The pink numbers represent the slopes of the lines (the one on the far right is missing a negative)

Before having students find or compute slope I present the problem as shown in the photo above and discuss the meaning of the different numbers. What I find is that students get the different numbers confused and teachers often overlook this challenge. This approach is part of a task analysis approach in which the math topic is broken into smaller, manageable parts for the student to consume. Once the different types of numbers are established for the students we can focus on actually computing and interpreting the slope.

This instructional strategy is useful for all grade levels and all math topics.

 

Tagged , , ,

Fraction Word Problems Scaffolded

IMG_20160330_094910123

Above is a handout used to scaffold student work with fraction word problems (more on this below).

Here is a type of word problem I recently encountered in working with a student with special needs: There are 60 students. 3/5 of the students are girls. How many students are girls? The student struggled with this problem in regards to the concept of fractions and in determining a fractional amount of a total.

To address the concept of fractions I used the handout seen in the photo above. (The handout can be printed in color to show the actual colors of the birds – see this handout.) A pink highlighter (red is too dark) is used to help the student connect the actual red birds with the number of redbirds used in writing the fraction.

To work out the 60 students problem the following approach is used to develop conceptual understanding – see photo below. (Note: for students in upper grades who struggle teachers often turn first to showing how to solve by multiplying. Students who are working at below grade level typically need the conceptual piece to be addressed first.)

  1. Break the all the items into groups based on the denominator, in this case it is groups of 5.
  2. Mark the fractional amount in each group, in this case mark 3 of the 5 circles.
  3. Find the total number of circles marked in.

IMG_20160331_091300286

To scaffold this approach I use a task analysis approach and break the strategy into steps.  First I use a handout focusing students on circling a fractional amount in each group – see photo below.

IMG_20160330_094924744

The next step is to count the number of items circled (or marked).

IMG_20160330_094935907

The next step is to use a situation where the items to circle are not colored (the circles in the student word problem are not colored but are hand drawn figures). In the photo below Students are tasked with circling and counting.

 

IMG_20160330_094945199

Then students take the next step is to answer the question to find the total number.

IMG_20160330_094957763

Finally, students are tasked with creating their own drawings before circling and counting.

IMG_20160330_095010262

Tagged , , ,

Targeting Gaps in a Math Topic

percent vs monetary value

A key to intervention for math is to drill down into a topic to see which step is causing a student problems. This is a big reason why ongoing progress monitoring is vital to intervention.

In this case a student in a previous session had occasionally added the percent to the dollar amounts – the step that was problematic. He conceptually wasn’t thinking about the meaning of the values but just added or subtracted numbers he saw. In response the next session focused on helping the student discern between the percent rate and the monetary values.

In the photo above is the work of the student as review of the previous session. This was followed by highlighting the dollar amounts in green and the percent amount in yellow. It was emphasized that the yellow was not used in the calculation in the bottom row.

This was followed by the task seen in the photo below. The focus is strictly on the one step that was problematic. This was followed by work on IXL.com (2nd photo below) with the student writing in values on the handout shown on the  bottom photo to help the student focus on this tep

percent vs monetary value 2

percent vs monetary value 3

Tagged , , , ,

Assessment of a Math Objective

2016-02-04 16.40.47

List all the steps for the objective. Use this table (above) as a pretest to identify gaps.

Provide instruction on the gaps. In the photo below I used color coding to show what to multiply and scaffolding to align the digits in ONES and TENS place. NOTE: I provide the problems with some steps already completed to focus on the steps for which gaps were identified.

2016-02-04 16.41.07

After providing instruction on the steps with gaps data is collected on mastery of these isolated steps. NOTE: The problems are identical in nature to the gaps and the problems used in instruction. (Link to the data sheets – WORD so you can revise.)

2016-02-04 16.41.27

Tagged , , , , , , ,

CEC 2014 Presentation on CCSS Math Support

highlight constant

This link is for a drop box that contains the handouts for this presentation. Please email me with follow up questions ctspedmathdude at gmail.com.

 

Tagged , , , , , , , , ,

Counting Money Coin Chart

coin chartThis chart is what we use to teach students to count total value for given coins. Students start by placing coins in order from most value to least. We start with pennies only, then nickels, dimes then combinations. Students learn value of coins with initial matching then through working with the coins as they count total value.

 

Tagged , , , ,

Interpreting Slope Intercept

Slope is one of the most important topics covered in high school algebra yet it is one of the least understood concepts. I have two observations about this. First, slope is often introduced with the formula and not as a rate of change. Second, students intuitively understand slope as rate of change conceptually when presented in a relevant, real life context. The challenge is compounded when slope is presented with the y-intercept.slope intercept scaffolding

In the photo I present slope and y-intercept in a context students can understand (money is their most intuitive prior knowledge). The highlighting makes it easier for them to see the context, specifically the variables. I have the students work on this handout and I circulate and ask questions.

Here’s a typical exchange – working through problems 11, 12:

  • Me: “Look at the table, what’s changing?”
  • Student: “the cost”
  • Me: “How much is it changing?”
  • Student: “20”
  • Me: “20 what?”
  • Student: “20 cost”
  • Me: “What are you counting when you talk about cost?”
  • Student: “money…dollars”
  • Me: “So the price is going up 20 what?”
  • Student: “Dollars”
  • Me: Show me this on the yellow” (student knows from before  to write +$20)
  • Me: “What else is changing?”
  • Student: “People”
  • Me: “By how much”
  • Student: “1 people…person”
  • Me: “write that on the green”
  • Me: “Now do this same thing on the graph. Where do you start?” (they put their pencil on the y-intercept
  • Me: “What do you do next?” (they typically know to move over and up)
  • Me: “Use green to highlight the over” (they highlight)
  • Me: “How much did you go over?”
  • Student: “1…1 person”
  • Me: “Now what?” (Student goes up.)
  • Me: “Highlight that in yellow.” (They highlight.)
  • Me: “How much did it go up?”
  • Student: “2…20…20 dollars”
  • Me: “What is a rate?” (I make them look at their notes until they say something about divide or fraction or point to a rate)
  • Me: “So what is the rate of change?”
  • Student: “$20 and 1 person”
  • Me: “Look at the problem at the top. What is the 20?”
  • Student: “$20 per person.”

I point out that you can find this rate or slope in the equation, the table and in the graph.

Tagged , , , , , , , , ,

Intro to Slope as Rate of Change

Slope may be the most challenging concept to teach in algebra yet it is one of the most important concepts. I use the following sequence to introduce slope: rate of change, rise over run, rise over run as a rate of change. The first photo is a map of Manhattan with directions on counting city blocks. This builds on prior knowledge to introduce rise and run.

Manhattan map for rise and run

The photo below builds on the map and transitions students into coordinate planes. They are introduced to rise over run and positive and negative as indicators of the direction of a line.

rise over run on grid

The photo below combines rise and run with rate of change. The hourly wage is prior knowledge they can much more easily comprehend. A major issue is getting students to include units and to understand what units are. This would have been addressed in the previous unit on rates and proportions.

rise over run as rate of change

This is the handout used with a train activity in which I use battery operated trains and time them as they travel 200″. I project a stop watch on the screen as the train moves. The kids pick up right away that Percy is “slow.” As Percy is traveling I ask them how they know it is slow and get answers like “it takes a long time.” This is a concrete representation which they can draw upon as they work with the graph and calculations.

train activity

The photo below shows a scaffolded version of a Smarter Balance (Common Core assessment) test question. The original question simply shows the graph and asks for average rate of change from 0 to 20 years. Even with the scaffolding many problem areas appear: units vs variable (student wrote “value” as opposed to $), including $ with the 1000, finding unit rate, and even identifying the part of the graph at 0 years.

rate of change Smarter Balance problem scaffolded

Tagged , , , , , , , , ,

Graphic better than FOIL

Typically, multiplying two binomials is presented with FOIL. This approach is problematic for two reasons: it is a mneumonic for a purely symbolic representation and it is also an isolated strategy that does not connect well to prior knowledge.

FOIL

Another approach is to use a graphic organizer and context. In the photo below I presented students with the scenario of expanding my patio (under the guise of being so popular I needed more space to entertain). The top figure shows the expansion of length alone. This allows for a simple distributive problem and (and eventually factoring out the GCF). The bottom figure shows an expansion of length and width which leads to multiplying binomials. Students would see that the area of the new patio is computed with (6 + x)(5 + x) which is the same as finding the area of each individual rectangle (presented in photo at the bottom). (This is useful for factoring trinomials as well.)

IMG_20110118_122521

This scaffolded approach is effective because it presents the concept in a different representation, it connects to prior knowledge of distributive property (useful for memory storage) and it is connected to prior knowledge of area of rectangles so it has meaning.

Subsequent problems would use the boxes as a graphic organizer (see photo below).

multiply binomials

Tagged , , , , , , , , , ,
%d bloggers like this: