Tag Archives: meaning

Webinar on Making Math Meaningful (Specifically for students with autism)

webinar-making-math-meaningful-screen-shot

https://www.dropbox.com/s/vjxh4ynvsckkx8r/Webinar%20Making%20Math%20Meaningful.mp4?dl=0

folder link

Tagged , , , , ,

Making Discount Meaningful

_20160210_132333

Educators teaching math typically start with the “mathy” stuff first. For example, for finding the sales price teachers may start with showing students the steps to calculate (photo below).

I start with the concept, either with a pictorial representation or actual objects to represent the underlying concept. In the photo above, I show an object (related to the student’s interest – this student is into weight training) on sale. The $50 circled in yellow represent the original price. I explain the concept of being on sale and discount and show that 20% is $10 to take away (marked out). This leaves $40 (in green) which is the sales price. This allows for conceptual understanding before showing him the “mathy” way of doing the problem.

compute discount

Tagged , , , , , , , ,

Conceptual Understanding Before Getting “Mathy”

image

All too often math topics are introduced first with the skills and steps. This is backwards. The photo above shows how I introduced solving equations a high school student with autism using the concept as an entry point.

We discussed what was involved in buying a car, including payments (no interest) then I posed the problem seen at the top. I asked him to figure out the monthly payment. He worked out the problem, overlooking the down payment. With a minimal prompt he self corrected. I followed this by “showing him the mathy way of doing the problem.” (Seen in the bottom half of the photo). He conceptually understood why the -1,000 was the first step and x had meaning.

This is a version of CRA.

Tagged , , , , ,

Analogies: Making Math Meaningful

_20160203_103048

Math is an esoteric subject for most people. Good instruction makes information meaningful. One method for making information meaningful is to connect new information to prior experience.

In this situation the new information involves determining whether shapes are similar (see photo below). One example of student prior experience with this topic would be shrinking people down. In the photo above I use Mini Me and Dr. Evil and their respective (and fabricated) weights and shoe sizes as measures that will eventually give way to measures of sides of a polygon (below). When working on the problem below the students can be prompted by recalling the analogy of Mini Me and Dr. Evil.

picture-of-similar-triangles-2

Tagged , , , , , ,

Equation with variable on both sides scaffolded

intro to variable on both sides

 

Solving equations with a variable on both sides proves to be exceedingly tricky for many students. My approach is to focus on the individual expressions taken from both sides of the equation and to present them in the context of a relevant real life situation. The photo shows a snippet of the handout I use. The table is scaffolded to help students compute costs based on number of toppings. The pizza places charge the same at 3 toppings. Domino’s charges more for 0-2 toppings and Pizza Hut charges more for 4 or more toppings. The color coding fleshes this out.

Overall the kids are actively engaged and the variable, expressions and the overall equation has meaning.

Tagged , , , , , , ,

Memory

One model for memory is called the Information Processing Model or Dual Storage Model.

IPM

 

Here’s the suggested process in this model in a class instruction context:

  1. Our senses receive stimuli. In the classroom students hear the teacher or a classmate talking, see the teacher’s notes or the note being passed to them, smell various things in class, taste their gum etc. 
  2. The sensory register filters out most stimuli which means the teacher’s lesson is competing with all the other stimuli for attention. Most students are either visual or hands on learners yet the majority of instruction is conducted through auditory means. Information in a lesson that is meaningful or interesting is more likely to make it through the register.
  3. The information that makes it to the working memory is processed. Working memory has a limited capacity. Like a computer, if it is attempting to process a lot at one time it slows down. It is hard for some students to process a lot of auditory information if they are a visual learner so as they are attempting to process they may be missing other parts of instruction. This is why scaffolding and other strategies are important. They help reduce the amount of information the student has to process. The working memory also attempts to organize and make sense of the information -Gestalt Theory. Here are some examples. When I present the image below under “closure” and ask people what they see, the response is almost always “a triangle.” The really is no triangle there but the brain fills in the gaps. The brain wants to make the visual information meaningful. gestalt-theory-images
  4. The information that makes it to long term memory is filed away. Effective learning means the stored information can be readily retrieved. Think of computer files or files in a file cabinet. I have a file for Gabriel’s IEPs so I can easily retrieve them. Contrast that with how a student may stuff his homework assignment into his bookbag but later cannot find it. Effective storage is enhanced when the information is organized and makes sense. This is helped by making the information meaningful or by addressing prior knowledge (e.g. new IEPs filed with old IEPs).

Most if not all educational strategies would address some aspect of this model.

Tagged , , , , , , , , , , , , , , ,
%d bloggers like this: