The post shows a lesson to introduce factoring out a GCF. The handout is chunked to incrementally add task demands. A Jamboard is used as a complement to flesh out the concept of a factoring by allowing engaging the student kinesthetically, with scaffolding as guidance. (See image at bottom for how to make a copy to access it.)

The sequence starts with a review of factoring and distributive property. The boxes are a preview of the scaffolding for the full factoring to be presented in subsequent chunks.

The Jamboard slides aligned with the first chunk has students pull apart the variables with exponents to help them understand the meaning of the exponents during factoring. For example, there are two Xs overlaid on the x squared. Similarly, there are two 5s, one overlaying the other to allow them to be distributed.

The next chunk in the lesson is factoring out with the terms written with the multiplication symbol written in between. The problems are aligned with the distributive problems to help with the concept of “reverse distribution.” The same problems are presented again in box form as the boxes will be used to support the full factoring. Using the same problems helps the students understand how the boxes work. The Jamboard reinforces the distribution by allowing the movement of the 5s out of the binomial, including with the box method.

The last chunk combines the factoring of individual terms and the factoring out. This is conducted with the box methods for support, and then the boxes are faded. The scaffolding starts by writing the expression with parentheses because that step is easy to overlook when explaining it to students and can be confusing for students.

Here is what the final version looks like.

Note: the handout has blank templates for copying and pasting if you want to create your own handout.

Make a copy of the Jamboard in order to access it.

Typically, multiplying two binomials is presented with FOIL. This approach is problematic for two reasons: it is a mneumonic for a purely symbolic representation and it is also an isolated strategy that does not connect well to prior knowledge.

Another approach is to use a graphic organizer and context. In the photo below I presented students with the scenario of expanding my patio (under the guise of being so popular I needed more space to entertain). The top figure shows the expansion of length alone. This allows for a simple distributive problem and (and eventually factoring out the GCF). The bottom figure shows an expansion of length and width which leads to multiplying binomials. Students would see that the area of the new patio is computed with (6 + x)(5 + x) which is the same as finding the area of each individual rectangle (presented in photo at the bottom). (This is useful for factoring trinomials as well.)

This scaffolded approach is effective because it presents the concept in a different representation, it connects to prior knowledge of distributive property (useful for memory storage) and it is connected to prior knowledge of area of rectangles so it has meaning.

Subsequent problems would use the boxes as a graphic organizer (see photo below).