Tag Archives: CRA

Hands on Approach to Factoring out the GCF

gcf-cards-set-up-photo

Factors are “things being multiplied”, e.g. 2 and 3 are factors of 6.

Factoring polynomials like 5×2 + 15 above is one of the most challenging algebra topics, especially for students with special needs. To make these problems more accessible a more concrete approach is possible. The photo above shows how finding a greatest common factor (GCF) is possible using a hands on, visual approach. Click on this link to a folder with a document explaining this approach and with a document that is a master for these card cutouts.

Advertisements
Tagged , , , , , ,

Addressing the Concept of Addition Part 2

2016-02-24 10.26.09

In a previous post I presented an approach to teach and assess the concept of addition. This document shows all the steps I use including the one shown in the photo above.

Tagged , , , ,

Assessing the Concept of Addition

IMG_20160224_102140729

Teaching students to add appears to be a very linear, skill driven endeavor. Hidden in this is the concept of what it means to add and how to assess this conceptual understanding. Here is an approach to address and assess the concept of adding.

In the photo above a student is prompted to pull both groups into 1 pile (see photo below). The word, add, is not addressed. The symbol is absolutely not introduced yet.

IMG_20160224_102149472

Once the student has demonstrated a consistent performance of pulling the groups into 1 pile (addition) two other tasks are introduced, taking away and sorting. The student is presented each of these individually (field of 1).

IMG_20160224_102246861

sort

After showing consistent performance in demonstration of these skills, the skills are then presented using a generalized mat (see below).

generalized mat

Then two skills as pairs. First  “pulling together” and “taking away” are randomly prompted individually, e.g. “pull into a pile” using the generalized mat above. Then combine “pull together” and “sort” then “sort” and “take away.” Finally all 3 are randomly chosen (field of 3).

 

Tagged , , ,

A Meaning Making Approach to Word Problems

Here is a typical story or word problem.

Dakota helped her father bake cookies. They baked 9 sugar cookies and 3 chocolate chip cookies. How many cookies did they bake total?

When solving word problem the focus is often on following steps, e.g. read the problem and identify important information. There is also a focus on identifying key words, e.g. “total.” The problem with both is they rely on rote memorization. How do we identify “important” information? Focusing on the word such as total does not address the concept of total but is more of a signaled command like “sit.” Students see “total” and they know they are supposed to add. The problem is they often don’t understand why.

The entry point to word problems should be a focus on the underlying concepts. For example, present the word problem with cutouts of the actual cookies and physically demonstrate “total” by pulling all the cookies together. Similarly, you can have cutouts of the tadpoles and demonstrate the concept of how many are left.

word problems focus on concept first concept first approach

Words are symbolic representations of ideas. Same with math symbols (below). Addressing the concepts, vocabulary and the process with this approach is a concrete-representational-approach (CRA). The equations below would not be addressed until the conceptual understanding was developed. When word problems presented do not include the term “total” the student can process the context as opposed to being reliant on the signal.

word problems focus on concept first traditional approach

Tagged , , , , , , , , ,

Making Discount Meaningful

_20160210_132333

Educators teaching math typically start with the “mathy” stuff first. For example, for finding the sales price teachers may start with showing students the steps to calculate (photo below).

I start with the concept, either with a pictorial representation or actual objects to represent the underlying concept. In the photo above, I show an object (related to the student’s interest – this student is into weight training) on sale. The $50 circled in yellow represent the original price. I explain the concept of being on sale and discount and show that 20% is $10 to take away (marked out). This leaves $40 (in green) which is the sales price. This allows for conceptual understanding before showing him the “mathy” way of doing the problem.

compute discount

Tagged , , , , , , , ,

Conceptual Understanding Before Getting “Mathy”

image

All too often math topics are introduced first with the skills and steps. This is backwards. The photo above shows how I introduced solving equations a high school student with autism using the concept as an entry point.

We discussed what was involved in buying a car, including payments (no interest) then I posed the problem seen at the top. I asked him to figure out the monthly payment. He worked out the problem, overlooking the down payment. With a minimal prompt he self corrected. I followed this by “showing him the mathy way of doing the problem.” (Seen in the bottom half of the photo). He conceptually understood why the -1,000 was the first step and x had meaning.

This is a version of CRA.

Tagged , , , , ,

Analogies: Making Math Meaningful

_20160203_103048

Math is an esoteric subject for most people. Good instruction makes information meaningful. One method for making information meaningful is to connect new information to prior experience.

In this situation the new information involves determining whether shapes are similar (see photo below). One example of student prior experience with this topic would be shrinking people down. In the photo above I use Mini Me and Dr. Evil and their respective (and fabricated) weights and shoe sizes as measures that will eventually give way to measures of sides of a polygon (below). When working on the problem below the students can be prompted by recalling the analogy of Mini Me and Dr. Evil.

picture-of-similar-triangles-2

Tagged , , , , , ,

CEC 2014 Presentation on CCSS Math Support

highlight constant

This link is for a drop box that contains the handouts for this presentation. Please email me with follow up questions ctspedmathdude at gmail.com.

 

Tagged , , , , , , , , ,

Intro to Measurement

The photos below are used to introduce length and area as part of a CRA approach. First a student is asked to build a Lego garage. He first builds the bottom row of a wall and the teacher asks for length in terms of how many Legos are lined up. After building a wall the teacher asks for area in terms of how many Legos are used in the wall. Then the student is given a handout with the following photos. Following this handout the student finds length and area of tiled floor and walls made up of cinder blocks, if available. Eventually a ruler is introduced and multiplying to find area is presented at the end.

IMAG3165

For the photo above the student is asked to count Legos to compute length. In the photo below the student is asked which is longer and to explain.

IMAG3166

IMAG3163

In the photo above the student is first asked to determine the area of the red wall in terms of number of Lego squares. Then the student is asked which wall has more area. This is followed by the photo below. This allows a different perspective of area.IMAG3164 

Tagged , , , ,

CRA for Solving Equations

SUMLOWS part 1

This is a photo of a handout from a special ed conference shared by Dr. Shaunita Strozier (sstrozier@valdosta.edu) of Valdosta State University. It shows the use of algebra tiles to provide a concrete level of the concept of an equation and solving the equation. The photos on the left show the R or representational level of the concept. Her approach is called SUMLOWS which is an acronym explained in this handout.

SUMLOWS part 2SUMLOWS part 3

Tagged , , , , , ,
%d bloggers like this: