# Scientific Notation – an Introduction

## The instructional unit presented in this post is designed to leverage student understanding of money and relationship between denominations. For example, having two \$1 bills and one quarter has the same value as one \$1 bill and five quarters. Scientific Notation is introduced at the end.

### Meaning Making

My first step in presenting a new topic is meaning making. For scientific notation, the underlying idea is NOTATION – “the act, process, method, or an instance of representing by a system or set of marks, signs, figures, or characters.” We can represent numbers in different ways, one of which is scientific notation. This is useful to represent very large or very small numbers (as happens in science). It is useful because in lieu of writing out a bunch digits, the power of 10 can be used as a shortcut. In the image above you see that 4.5 x 104 has two parts, the decimal and the 10s.

Before I get into these big or small numbers, I address the concept of notation because that word is in the topic. To introduce a concept, I typically start with a related topic that is relevant for students. In this case it is money. To mirror the two parts of scientific notation, I list the bills and how many of each. In the left image below, I show both parts and pair combinations that are the same value (a single \$10 bill and ten \$1 bills). I then show how I can convert a single \$10 bill by dividing by 10 and then multiplying the number of bills by 10 (middle image). This previews the steps used in scientific notation. Then (right image) I show the same approach for dollars and cents (which previews decimals). Note: to help flesh out the dollars and cents I would first use the linked Jamboard.