Advertisements

\

Obtuse angle on the left (see upside down “T” figure) and perpendicular lines (right angle) on the right.

In general math is taught by focusing on the steps. Conduct a Google search for solving equations and you will see the steps presented (below). You need a video to help your student understand solving and you typically get a presenter standing at the board talking through the examples. (I’ve posted on my approach to solving equations.)

When the math is taught through the skill approach the student may be able to follow the steps but often does not understand why the steps work (below). The brain wants information to be meaningful in order to process and store it effectively.

To help flesh this situation out consider the definitions of concept and skills (below). Concept: **An ****idea**** of ****what**** something is or ****how**** it works – WHY. **Skill: **“****Ability****” to execute or perform “****tasks****” – ****DOING.**

Here is how the concept first approach can play out. One consultation I provided involved an intelligent 10th grader who was perpetually stuck in the basic skills cycle of math (the notion that a student can’t move on without a foundation of basic skills). He was working on worksheet after worksheet on order of operations. I explained down and monthly payments then posed a situation shown at the top of the photo below. I prompted him to figure out the answer on his own. He originally forgot to pay the down-payment but then self-corrected. Then I showed him the “mathy” way of doing the problem. This allowed him to connect the steps in solving with the steps he understood intuitively, e.g. pay the $1,000 down payment first which is why the 1000 is subtracted first. Based on my evaluation the team immediately changed the focus of this math services to support algebra as they realized he was indeed capable of doing higher level math.

If you have questions about math support, services or strategies share them using comment bar below or email me. I will answer as many questions as I can get to.

61 cents per ounce is a rate of change. Graph the line modeled by this (y intercept is 0) and it becomes slope of the line. In referring to algebra we often hear, “when will I ever need this?” My response is “all the time!” Our job as teachers is to make this connection for students.

It is difficult to individualize instruction in a whole class or small group setting. I created and taught the curriculum for a Consumer Math course at the high school where I teach. For a class of 10-12 students, all with an IEP, I developed an approach that allowed me to individualize the instruction for each students.

In the photo below is an example of a folder set up I used with the students in Consumer Math. Each student would have a dedicated folder, kept in the room and updated daily. The smaller paper shows the individualized agenda. The other paper shows an example of how the folder can be used as a resource. Student computer login information, accommodations like a multiplication table or notes can be secured inside the folder. The agenda would be changed out each day. (In case you are wondering about the label in the agenda, “Math Group 4.” This particular folder was used in a special education training session for teacher candidates.)

Below is a screen shot of a video in a series of videos that provide instruction on algebra topics. The videos are designed to make algebra more accessible for almost all students.

The presentations include the following instructional strategies

- A focus on conceptual understanding (not just teaching steps)
- Connection to prior knowledge
- Breaking the math topics down into “bite-sized” pieces (chunking)
- Color coding
- Making the math relevant

The videos can be used in the following ways

- Differentiation for students who need an alternative presentation
- Initial instruction for students who missed instruction
- Initial instruction as part of a class, e.g. flipping a classroom
- For use when a substitute is covering a class
- Intervention based instruction
- Part of math support services (especially for special ed teachers who are not well versed in algebra topics)
- Homework support

The videos include a link to the handouts used in the presentation. Additional practice worksheets will be included as well.

NOTE: this is only a sample, with more samples to follow. Please share feedback or ask questions.

The topic of imaginary numbers is one of the most abstract and therefore difficult math topics to teach in algebra. Here is how I introduce it to students (emphasis that this is only an introduction).

I write 1, 2, 3… on the board (see photo above) and explain to the student “at some point in life you learned to count on your fingers, 1, 2, 3…” These are called the Natural numbers.

Then I explain, “later you were told that no cookies means ZERO cookies. Zero is a new type of number. We call 0, 1, 2, 3… the Whole numbers. You learned a new type of number.”

This continues, “A little later on you were told you could have half a cookie and so you learned about a new type of numbers called fractions.”

This continues with negatives. Then I explain that all these number types can be found on the number line. We call the set of all of these numbers Real Numbers.

I conclude with “Now we have a new type of numbers that are not found on the number line. These are called imaginary numbers. Just like before you had number types you had before and now you have a new one to learn.”

The point of this approach is to help the students understand that a new number set simply builds on previous number sets. Also, the students have encountered this situation before.

**Overview**

A graduate level math intervention course at USJ has a practicum component in which graduate students work 1 on 1 with students with special needs over a 5 week period. An experienced math interventionist oversees the work. The focus of the sessions is on an identified math objective selected by the family or teacher of the student with special needs in math (students with IEP or 504, who are receiving extra services like SRBI, who are below grade level or who have a history of struggling with math)

Each graduate student, in collaboration with the supervising instructor, conduct initial assessment, implement a variety of instructional strategies and conduct ongoing progress monitoring and provide lots of objective data!

**Timeline**

The sessions run 5-6PM every Thursday from July 12 to August 9 at the USJ campus.

**Benefit**

- Parents are provided objective data from curriculum based assessments that can be provided to the home school educators.
- Parents are provided a portfolio of an array of instructional strategies. This could provide insight for the home school educators on what works for the student with special needs.
- Parents observe the sessions to gain first hand knowledge of how their student with special needs engages in math and knowledge of what effective math services look like.
- At the end, the graduate student will meet 1 on 1 with the parents to explain the assessment data and instructional strategies and will provide a comprehensive report.
- At the end, the instructor will meet with parents to explain how to leverage the information provided by the graduate students with the home school educators, especially PPT or 504 teams.

**Next Step**

If you are interested, please contact Randy Ewart (email address below). Note: these sessions are designed to benefit both the student with special needs and the graduate students. Hence, families who participate are expected to attend all 5 sessions.

**Instructor**

The instructor is Randy Ewart, a veteran math teacher and math interventionist who received his master’s in special education at USJ. He has provided consultation and services to multiple districts and over 100 students with special needs to make math accessible. You can visit his blog for examples of his work: www.ctspedmathdude.com. Email him at ctspedmathdude@gmail.com

%d bloggers like this: