Category Archives: Technology

Division of Fractions with Cookies

Division of fractions may be one of the most abstract concepts in middle school math. Here is an approach to address the concept using a Google Jamboard (you can make a copy which allows you to edit it), which would be a foundation for the ensuing steps. I will preface this approach by stating the obvious. Because this is very abstract and challenging for students, the approach is more complex – no royal road to dividing fractions.

To unpack this concept I start with the concept of division itself. One interpretation is distributing a collection of items into equal groups to determine how many items in each group. That lends itself well to dividing by a fraction. In the example below, I show 6 cookies divided into two groups to get 3 cookies per group. That is the goal, identify the per group amount.

Then we introduce a fraction. 6 divided by 1/2 can be stated in the group context as 6 cookies for half a plate or for half a group.

But we want a whole plate, a whole group. How do we get that? We need another half group which ends up revealing that we multiply by 2. (Keep in mind that the goal here is to unpack the concept and not so much the actual steps yet.)

Now we can turn our attention to the full dividing fractions situation. The approach is the same as the whole number divided by a fraction; we start with the fractional item in the fractional group. Then we build the whole plate (group) which results in building the whole cookies. At the end I take a stab at showing the mathy steps but I am unsure how I would unpack the steps at this point – again, focusing on the concept in this activity. I think I would not show the steps and have the students simply do hands on building a whole group, by manipulatives and subsequently by drawing.

Tagged , , , , , , ,

Plotting Points Introduction

Plotting points is surprisingly challenging for some students. Here is an approach originated by one of my former math teacher candidates in a methods class I taught. This approach uses the analogy of setting up a ladder.

First, determine where to position the ladder, then climb the ladder. (brilliant and not my idea). Plot the point on the ladder, then pull the ladder away. The context includes green grass for the x and yellow for y because the y axis extends to the sun. This is shown on a Google Jamboard with moveable objects (you can make a copy to edit and use on your own).

Next, fade the ladder but keep the color – note the color of the numbers in the ordered pair. 3 is green so move along the grass to the 3. Then yellow 5 so move up 5, towards the sun.

Now, keep the the colored numbers and still refer to the green grass (faded) and sun (faded).

Finally, on a handout students can use highlighters as necessary to replicate the grass and sun numbers. The highlighters can be faded to result in a regular plotting a point problem.

Tagged , , , , , ,

Sequence of Algebra 1 Videos

I have produced a Beta version of a sequence of algebra 1 videos (up to 1 step equations as of Aug 15, 2021 with more on the way).

My approach is to unpack the concepts before showing the steps so the student understand how the math works. The videos are kept shorter, when possible, and they build on each other.

I will eventually revise many if not most videos based on feedback. Also, I will create a practice worksheet for each. For now I am simply trying to get something out there for the start of the school year. Solving equations is an incredibly important math topic to master and I hope these help.

Tagged , , ,

Counting Money – Jamboard

If you have a student who is learning to count money, here is a virtual set up to do so. I suggest having the student do a test run by moving coins into a box and bills into a box. It is easy to duplicate each item by clicking on the item to duplicate it.

If it works, you can insert images of items to purchase. Note, I start with just pennies or just $1 bills and incrementally add additional currency. I also present items to purchase that are of interest to the student – the image below was used with a student who loves Minecraft.

Tagged , , , , ,

Introduction to Linear Functions – Buying a Used Car

When our 3rd child was born, we decided to buy a used Honda Odyssey as 3 young kids were not fitting into a sedan. Being the stats geek I am (master’s in statistics at the University of South Carolina – total geek) I collected mileage and price data for all the used Odysseys for sale on dealer sites throughout South Carolina. I then created a the scatterplot shown below. I went to a dealer, showed an agent my graph, and he immediately exclaimed “Where did you get that? We create graphs like that every week!”

It was this experience that led me to the idea of using used car data to introduce linear functions. Shopping for a used car has proven to be a relevant, real life activity the students enjoy.

Here is a link to a comprehensive activity that walks students through various components I use for introducing students to linear function topics.

  • Used car shopping to collect data on 10 used cars of a single make and model.
  • Creating a scatterplot for price vs mileage of the used car of choice.
  • Creating a line of best fit (regression line) to model the data.
  • Creating a linear bi-variate equation (regression equation) to model the data.

The activity is presented on a WORD document (feel free to revise). It shows screenshots to walk student through the Carmax website (subject to Carmax revising their website). The screenshots make it easy for the student to navigate, which increases independence. (NOTE: there is an ample number of Youtube videos on using Google Sheets for this activity.)

The end product looks like this. Note the importance of using 1000s of miles as the slope is more meaningful, -$140.64 per thousand miles, as opposed to 14 cents per mile. I would start with the scatterplot alone to unpack the variables, the relationship between the variables, and the ordered pairs. Then the line and equation can be introduced to show a meaningful use of the line and the equation. The y-intercept has meaning with “0 miles” equating to a new car (I do not explain that new cars have miles already accumulated until we unpack the math).

Tagged , , , , , , , , , ,

Intro to Systems of Equations: Camry vs Mustang Depreciation

The scatterplot above is an approach I use to introduce systems of equations. Here is the process I use. (Note: I have found that students like math associated with buying a car – relevant, real life application for them.)

  • In my class, students would have seen a scatterplot with mileage and price for a single car. I explain that we will now compare two cars.
  • To review, in a do now or initiation at the start of class I would have one group generate a scatterplot for the Toyota Camry data and the other groups, Mustang (Excel sheet for all of this note: this data is old). Then they would share with each other
  • We would revisit the relationship shown and revisit the idea of depreciation.
  • I show a Camry and Mustang and ask two questions: Which car do you think costs more brand new? Which do you think depreciates faster and why?
  • Then I show them the scatterplot above and ask which car has higher dots at the far left? Explain what this means (Mustangs start off with a higher price). Then I ask about the dots at the far right.
  • The students are then asked to estimate when the cars have approximately the same value.
  • Then I present scatterplot below, with lines of best fit (trend lines) and they are asked the same question. We estimate the specific mileage and price and write as an ordered pair.
  • Finally, I explain that this is known as a system of equations and the ordered pair is the THE solution. The entire unit will focus on finding an ordered pair as a solution.

Tagged , , , , , , , ,

Graphing Calculator and Miami Vice

The TI-83 appeared only 6 years after Miami Vice but it and the upgrade versions are still suggested or even required in SOME* US colleges (see gallery of math syllabi below). This has implications for math classes in high schools, as seen in many teacher Facebook posts.

*In a previous iteration of this post I wrote “many” and wanted to clarify.

Teachers are faced with a dilemma, do they use Miami vice era technology because the higher institutes of learning may require it or do they avail themselves and their students of user-friendly and effective technology like Desmos, which is FREE!

I suggest using Desmos (or similar technology) to unpack topics and then assigning practice with the TI model of choice, with it used on the tests as well. This will mirror what students will likely see in college.

To make this situation even more disjointed, a commonly used math placement test for colleges does not allow either Desmos or a TI calculator.

Clockwise from top left: syllabi from CCSU (Connecticut), Gordon State, Texas A&M Commerce, THE Ohio State University, University of Kentucky, and University of Oregon.

Tagged , , , , , ,

IXL.com – Excellent Tool for Differentiation

IXL.com is a site that provides online practice for math (and other topics). It has a hidden feature that allows for very effective differentiation. This can be highly useful in a general ed math class and in settings for special education services. This includes special ed settings with students working on a wide ranges of math topics, for algebra students who missed a lot of class or enter the course with major gaps, and for the general algebra population to meet the range of needs. IXL can be used before the lesson or after, for intervention.

https://www.ixl.com/

By way of example, assume you have a student or students working on graphing a linear function using an XY table (image below). Using a task analysis approach, this topic can be broken up into smaller parts: completing an XY table, plotting points and drawing the line, interpreting what all of this means. I will focus on the first two in this post.

https://slideplayer.com/slide/6410042/

IXL has math content for preschool up to precalculus. For the topic of graphing (shown above) many of the steps are covered in earlier grades. For example, plotting points is covered in 3rd grade (level E), 4th grade (level F), and 6th grade (Level H). To prepare students for the graphing linear functions, they can be provided the plotting points assignments below to review or fill in gaps.

The tables used to graph are covered starting in 2nd grade (level D) and up through 6th grade (level H). These can also be assigned to review and fill in gaps.

When it is time to teach the lesson on graphing a linear function, IXL scaffolds all of the steps. For example, the image below in the top left keeps the rule simple. The top right image below shows that the students now have an equation in lieu of a “rule.” The bottom image below shows no table. All 3 focus on only positive values for x and y before getting into negatives.

The default setting on IXL is to show the actual grade level for each problem. I did not want my high school students know they were working on 3rd grade math so I made use of a feature on IXL to hide the grade levels (below), which is why you see Level D as opposed to Grade 2.

Tagged , , , , , , , ,

Simplifying not so Simple Equation Solving

Several special ed teachers identified solving multi-step equations as the most challenging math topic to teach in middle school math. Here is my approach to teaching multi-step equations like 3m + 4m + 1 = 15. .

First, I use a task analysis approach to break down the math topic like we cut up a hotdog for a baby in a high chair. MOST of the steps involved are prior knowledge or prerequisites skills. I present these in a Do Now (warm up, bell ringer, initiation) – see image below. This allows me to fill in the gaps and to lay the foundation for the lesson. The prerequisite skills include simplifying expressions and solving 2 step equations. I also present meaning for the equation with a relevant real life problem that is modeled by this equation. By attempting the walkathon problem without the “mathy” approach, the students will more likely understand the equation and why they add 3m and 4m.

After reviewing the Do Now I use Graspable Math, which is a free online application that allows users to enter their own expressions and equations. These can be manually simplified and solved by moving parts around. Here is a tutorial on how to do this. This allows them to manually work with the simplifying and the equation before working on the handout, in a concrete-representational-abstract approach.

This is followed by a scaffolded handout with the use of color coding. I have student work on the first step in isolation as that is the new step (the other steps are prior knowledge and were addressed in the Do Now). This avoids all the work on the other steps that can result in sensory overload and allows me to address mistakes in the new content immediately.

This handout can have the equations removed and be used as a blank template to follow. In turn this would be followed with regular solving worksheets.

Tagged , , , , ,

Addressing Multiplication as a Gap

There is a delineated sequence for teaching multiplication over the years, including repeated addition, set modeling, arrays, single digit etc (below). It exists to build conceptual understanding of the multiplication facts that are at some point memorized by many students. When I work with students who are a more than a year behind in the sequence for multiplication, I find that programming for these students to help them catch up sometimes involves shortcuts such as a reliance on rehearsal or resorting to use of the multiplication table in isolation. I am not against use of the table or narrowing the focus, but am promoting a more comprehensive approach.

Here is a sequence, on a Jamboard, I used for a recent student who was struggling for a long time with multiplication (explanation of each step shown below images). The student was interested in Minecraft so I used Minecraft items such as stone bricks and a wagon. I would spend as much time on each step, as necessary.

  • Count out the total number of stone bricks. This allows an assessment of how the student counts: by 3s or individually. If individually, I would prompt the student to count by 3s.
  • Add 3 + 3
  • Show a short video on the wagon (this adds interest and gives the students a bit of a break)
  • Present the bricks in 2 groups of 3, in context of 2 wagons with 3 bricks each.
  • Present the same problem as a multiplication problem but with the image for one of the factors in lieu of two numbers.
  • Use the multiplication table to skip count.
  • Present additional multiplication problems for independent attempts. The student completed both problems independently, without the table. For him this was a major success.

The follow up to this would be to assess his ability to do higher groups of 3s and groups of other numbers. For some students, I work on mastery of individual numbers before moving on. This builds confidence and allows for fluency in the process of skip counting out to the appropriate number. NOTE: I don’t worry about rote memorization of the facts but of fluency in the process of skip counting out the answers.

For students who are older, I sometimes recommend that the student be presented problems with visuals but then use a calculator to compute. This can develop conceptual understanding and also address the working memory and other related issues that undermine learning math facts.

Tagged , , ,
%d bloggers like this: