Category Archives: special education in general

Catching Up in Math is Often Akin to a Stuffing Suitcase

In working with students with special needs on math programming and services, a common and major issue is that the student is behind and there is a tension between filling in gaps and addressing grade level content. Let me unpack this (pun intended).

  • There is no single grade level for math, as is the case for reading. Math progression is more like a web, not a line. For example, if a student can do 5th grade geometry but only 3rd grade level fractions, do we average out the grade level math to be 4th grade? (No.) Do we identify the student as working at a 3rd grade level? (No.) 5th grade level? (No.)
  • Like a suitcase, there is a capacity to the daily time a student has for school services. I often encounter situations in which the services recommended involve the student working on grade level content and catching up on the gaps during support time. If the student has only been learning 75% of the math content each year, he or she needs that support time to help learn the new content to get closer to 100%. There is too much being stuffed into the suitcase. Something has to give.
  • The focus of the services and programming often shifts away from post-secondary plans, which has long term implications as I wrote previously using the falling dominoes analogy.

There are two recommendations I make in regards to addressing the gaps.

  1. Maximize the efficiency of the support time by having the support class focus on the prerequisite skills for current or upcoming topics.
  2. Use triage to shift focus to the priority topics. For example, the parents of a student in 7th grade but working on math from lower grade levels wanted to pursue a math track that would allow the student to go to community college. I mapped out a long range plan (image below) that focuses on algebra as that is the type of math most likely encountered in a math requirement. Here is another plan which was to prepare a student to possibly work in a field related to cars.
Tagged , , , , , , , , , ,

Planning and Preparing for Math in the Fall

If you are reading this post, it is likely that you have a student or you teach students who struggle with math. Here are suggestions to help your students prepare for the math they will encounter in the fall.

Many students are behind in their math education. This has long term implications. The sooner you can address the gaps, the better chance your student has for post-secondary success or competence with math.

Tagged , , , , ,

Life Skills Math – Not So Easy

As I wrote previously, shopping is dense with math tasks as are grocery stores. Here are some division situations that are sneaky challenging and require a student to know when and why to divide before even reaching for the calculator. I will use these to help illustrate the fact that life skills math is not simply counting money or using a calculator to add up prices. There is a great deal of problem solving and thinking skills that need to be developed.

For example, if a student has $60 to spend on gifts for her 3 teachers the student needs to understand that she can spend up to $20 per teacher (before even talking about taxes).

An entry point for division can involve a dividing situation the students intuitively understand, e.g., sharing food. Start with 2 friends sharing 8 Buffalo wings evenly (below).

This can lead into the 3 teachers sharing the $60 evenly (below). In turn, this can be followed by the online shopping shown above.

This approach can be used to develop an understanding of unit cost (cited in the shopping is dense post). Start with a pack of items to allow the students to see the cost for a single item before getting into unit cost by ounces, for example.

I have had success with teaching these division related concepts using sheer repetition as much of our learning is experiential learning. Using a Google Jamboard as shown in the photos allows for the repetition.

Tagged , , , , , , , , ,

K-12 Math Education is a Line of Dominoes

Critical dominoes in math education start falling in 6th and 7th grade with the last ones falling in college. If you have a student who struggles with math and is entering or returning to middle school, now is the time to intervene to avoid more serious issues related to math education in the future. If your student is not going to college or is not accessing the general curriculum, I suggest you read this.)

Below is a chart showing the different categories of Common Core of State Standards (CCSS) math (called domains) at different grade levels. For the majority of students who will attend college, the traditional algebra based sequence (algebra 1, algebra 2, and maybe pre-calculus, calculus) is the path of math courses to be taken. Given this, for students who struggle in math but have a post-secondary education as a goal, the domains I emphasize in middle school are Expressions and Equations, Ratios and Proportional Relationships, and Functions. For high school, I emphasize Algebra and Functions.

Looking at the overviews for CCSS math standards (below) you can see the dominoes line up.

  • In 6th grade, Ratios and Proportions are an entry point for Functions in 8th grade which leads to Functions in high school.
  • In 6th grade, Expressions and Equations are the entry point for Expressions and Equations in 7th and 8th grade, which lead to Algebra in high school.

If your student is struggling with the middle school topics I cited and the gaps are not filled, the struggle will be carried with them into high school and into college.

I recommend the following:

  • Focus IEP math objectives on the priority units of the math curriculum, as cited above.
  • Ask for examples of mastery for the objectives to help you evaluate progress and mastery. Have this in place from day 1.
  • Focus on study skills, not just content mastery.

Tagged , , , , , , ,

Critical Thinking

Often we adults engage students with closed-ended questions and then consider this as having a conversation with the student. I witnessed this first hand in a high school consumer math course I co-taught. The adults sat with the students the first day after December break for a conversation about their break. The questions were consisted of and were similar to the following. “Did you have fun?” “Did you eat a lot?” For some, like my son, this is appropriate. For many others, we are offering low hanging fruit that does little to move them forward.

Ask open-ended questions that prompt the student to engage in critical thinking such as analyzing and evaluating – below, courtesy of Jessica Shabatura. Work this into IEPs and 504 to have teachers implement this. For example, I asked the students what they liked about break. Then I asked why they liked it. Here is an example of me questioning my son, who does not have a disability, when he was maybe 4.

Tagged , , , , , ,

Curriculum Based Assessments

Most testing for IEPs involves standardized testing. As I wrote in a previous post, this is important testing but is not sufficient. A major focus of special education is to make the general education accessible as possible. Hence, curriculum based testing is an important complement to the standardized based testing. For example, the KeyMath3 assessment will speak to problem solving or geometry but those are broad categories. If I am working with a 3rd or 4th grade student, I would be interested in the student’s level of mastery in computing the perimeter of a rectangle.

Also, math is very different than reading because math has a variety of categories of math, aka domains. A student testing at a 4th grade level in math does not reveal much information, as I explain in this previous post.

When I conduct evaluations or assessments, I go to the Common Core Standards and assess each with curriculum based problems, see below. The photo shows my planning document and then I transfer the problems to a student handout for the student to complete.

Tagged , , , , ,

Secondary Characteristics: A Performance Factor

For students with a disability, performance does not align with ability.

In my view, there are 3 different categories of performance factors: the disability, gaps in achievement, and secondary characteristics. (Percents are contrived to provide a visual representation.)

To address these secondary characteristics, which manifest as a set of behaviors, I suggest a focus on shaping with a token board.

Here is a video explaining this.

Tagged , , , ,

The Process of Learning

Often education and special education focuses solely on content. In turn, the content may focus only on steps and facts to memorize as opposed to ideas and concepts.

A challenge for many students during k-12 education then in post-secondary life is being an independent, self-sufficient learner. The adults supporting them often focus on short term success at the expense of long term success in terms of independence.

I propose shaping the independent learning process early and often. An activity I use is completing jigsaw puzzles.

With guidance, completing a puzzle can activate 3 processes of learning: critical thinking, mindfulness, and perseverance. By having a strategy of identifying the side pieces of the puzzle, the student is analyzing pieces which is critical thinking. Paying attention to the shapes of pieces in mindfulness. Continuing to try different pieces when pieces don’t fit is an act of perseverance. Start with fewer pieces and focus on the process, then use increasingly more pieces of the same puzzle before moving on to another puzzle.

Here is a link to a video of me explaining this.

Tagged , , , , , ,

Math is a Language

The Gutenberg printing press was revolutionary because it provided a faster way to share words. In turn, these words and how they were structured were representations of ideas used to make sense of the world around us.

Math is a language with words and other symbols that also makes sense of the world around us. We consume and know more math than we realize or allow ourselves credit for.

When buying the latest iteration of an iPhone, we may call forth algebra. How much will you pay if you buy an iPhone for $1000 and pay $80 a month for service? Well, that depends on how many months you will use this iteration before moving on to the next iPhone. The number of months is unknown so algebra gives us a symbol to represent this unknown number of months, x (or n or whichever letter you want).

Just as there is formal and informal English (or other language), we can engage algebra formally or informally. You don’t need to write an equation such as y = 1000 + 80x to figure out how much you will pay. You can do this informally, compute 80 times 10 months + 1000 on the calculator. Then try 80 times 12 months etc.

Math provides us a means of organizing and communicating ideas that involve quantities like the total cost for buying an iPhone.

The difficulty in learning math is that it is often taught out of context, like a secret code. In contrast, a major emphasis in reading is comprehension through meaning, such as activating prior knowledge (see below).

In fact, math absolutely can and, in my view, should be taught by activating prior knowledge. My approach is to work from where the student is and move towards the “mathy” way of doing a problem.

Without meaning, students are mindlessly following steps, not closer to making sense of the aspects of the world that involve numbers.

Tagged , , , , , , , ,

Real Life Math VS “Mathy” Math

In working with students, parents and IEP teams, I find that there is an assumption that math at some point, possibly beyond arithmetic, is simply a science fiction movie that is minimally related to real life. I hear from students as well as adults, statements like, “algebra, when are we ever going to use it?” My response is, ALL THE TIME!

The math we often present in school is a “mathy” version of the math we encounter in life. For example, the top photo below shows a pizza menu and a situation that is realistic. The calculator screen shot below the menu shows how we likely would solve the problem using a calculator on our phone.

Below is the same type of problem, but solved using “mathy” math. How many of us (besides me) are doing this at the pizzeria?

The point is, we engage in algebra but maybe do not use all the symbols and vocabulary of algebra, e.g. when we typed in 2.25 repeatedly in our calculator, we were working with the math term “slope.”

This has implications for secondary students whose post-secondary plans do not include college. If the math class is teaching “mathy” math but you want your student to learn math as it is used in real life, then an alternative math course is needed. This could be addressed through the IEP.

 

 

Tagged , , , , , , , , ,
%d bloggers like this: