A common method to learn multiplication facts is through skip counting. In turn, this is a means of learning division facts (see next paragraph). The challenge for many students is they struggle to learn the skip count routines or cannot engage brute force memorization effectively (e.g., have a working memory deficit).

The challenge with multiplication by skip counting is keeping track of two sets of numbers while memorizing the order of the skip counting. That is another example of the rubbing belly and patting head phenomena in math where one extra task demand undermines the process.

A hack I use to scaffold this process to reduce the task demand during the learning process is to provide rows from a multiplication chart (below) for the facts of focus (3s and 4s in this example). The same approach can be used for division facts, e.g., in the image below right I have the student choose the row of the divisor (3) and then skip count to until reaching the dividend (12). The idea is the student has less task demands while learning the process and seeing the number pattern. This allows for more repetitions or rehearsal.

For students more severely impacted by a disability or who simply struggle with the patting head and rubbing belly of skip counting, the appropriate times table row can be provided for each problem to allow the student to circle (below). This allows for a hands on approach with even less task demand. You could also laminate the rows to make them reusable in lieu of several consumable ones requiring more paper. I like the consumable as I use that for data collection.

IXL.com is a site that provides online practice for math (and other topics). It has a hidden feature that allows for very effective differentiation. This can be highly useful in a general ed math class and in settings for special education services. This includes special ed settings with students working on a wide ranges of math topics, for algebra students who missed a lot of class or enter the course with major gaps, and for the general algebra population to meet the range of needs. IXL can be used before the lesson or after, for intervention.

By way of example, assume you have a student or students working on graphing a linear function using an XY table (image below). Using a task analysis approach, this topic can be broken up into smaller parts: completing an XY table, plotting points and drawing the line, interpreting what all of this means. I will focus on the first two in this post.

IXL has math content for preschool up to precalculus. For the topic of graphing (shown above) many of the steps are covered in earlier grades. For example, plotting points is covered in 3rd grade (level E), 4th grade (level F), and 6th grade (Level H). To prepare students for the graphing linear functions, they can be provided the plotting points assignments below to review or fill in gaps.

The tables used to graph are covered starting in 2nd grade (level D) and up through 6th grade (level H). These can also be assigned to review and fill in gaps.

When it is time to teach the lesson on graphing a linear function, IXL scaffolds all of the steps. For example, the image below in the top left keeps the rule simple. The top right image below shows that the students now have an equation in lieu of a “rule.” The bottom image below shows no table. All 3 focus on only positive values for x and y before getting into negatives.

The default setting on IXL is to show the actual grade level for each problem. I did not want my high school students know they were working on 3rd grade math so I made use of a feature on IXL to hide the grade levels (below), which is why you see Level D as opposed to Grade 2.

Here are excerpts from two handouts I use to help students understand how to write multiplication and rate word problems as math expressions. The image, below at top, shows a problem from the first handout I present. The students draw a single group represented by the rate expression (for elementary school word problems the term rate is not used). The image at the bottom is the same problem with scaffolding to write the multiplication problem. I find that students working on rates and slope in middle school, high school, and even in college struggle with this topic. I use this approach as part of a review of prerequisite skills before getting into rate and slope.

Several special ed teachers identified solving multi-step equations as the most challenging math topic to teach in middle school math. Here is my approach to teaching multi-step equations like 3m + 4m + 1 = 15. .

First, I use a task analysis approach to break down the math topic like we cut up a hotdog for a baby in a high chair. MOST of the steps involved are prior knowledge or prerequisites skills. I present these in a Do Now (warm up, bell ringer, initiation) – see image below. This allows me to fill in the gaps and to lay the foundation for the lesson. The prerequisite skills include simplifying expressions and solving 2 step equations. I also present meaning for the equation with a relevant real life problem that is modeled by this equation. By attempting the walkathon problem without the “mathy” approach, the students will more likely understand the equation and why they add 3m and 4m.

After reviewing the Do Now I use Graspable Math, which is a free online application that allows users to enter their own expressions and equations. These can be manually simplified and solved by moving parts around. Here is a tutorial on how to do this. This allows them to manually work with the simplifying and the equation before working on the handout, in a concrete-representational-abstract approach.

This is followed by a scaffolded handout with the use of color coding. I have student work on the first step in isolation as that is the new step (the other steps are prior knowledge and were addressed in the Do Now). This avoids all the work on the other steps that can result in sensory overload and allows me to address mistakes in the new content immediately.

This handout can have the equations removed and be used as a blank template to follow. In turn this would be followed with regular solving worksheets.

In education, math especially, there exist a learning situation I call the patting head and rubbing belly phenomena. In this phenomena students are presented a math problem that consists of several steps they know how to do and then maybe one or two additional steps that are new. Adding the additional step is like adding the task of patting your head while you rub you belly. The additional math step seems so simple, but attempting it simultaneously with an additional task can make the entire effort exceedingly challenging. A related scenario is generalization to different settings, but that is different. This is true for all types of math, whether it is the general curriculum or life skills/consumer math.

This phenomena plays out in life skills math or consumer math in a stealthy manner because the steps or tasks seem so simple. For example, many of us have worked with a child or student who was learning to count money. When learning about a nickel or a quarter, the coin name and value are easily identified. Once both are introduced, many students confuse the two and may even freeze while attempting the work with the coins.

There is an ABA based process for addressing this using a task analysis and chaining in which steps are worked on in isolation before connecting (chaining) the steps together (and not all of them at once until the end). One related strategy to help implement this approach is through scaffolded handouts in which the steps are enumerated and the structure of the handout isolates the tasks. I have used this approach for 1 to 1 correspondence up to AP Statistics (see below).

When working out a draft of an IEP, I suggest having the task analysis and chaining explicitly identified in the accommodations page and ask for an example of what this looks like (using an example math topic).

Unit rate (e.g., hamburger meat on sale for $2.39 per pound or you make $13 per hour) is an incredibly important topic in middle and high school. First, unit rates and unit costs are common in life. Second, in the Common Core State Standards math categories you can see that Ratios and Proportions (which includes unit rate) are a 6th and 7th grade topic and are then replaced by Functions in 8th grade. Below is a photo showing a graph of a function you can see that the slope in an application is a unit rate.

The unit rate is also conceptually challenging whether it is in a function or is a unit cost at the store. This is a major sticking point for many students in special ed who have fallen behind. To address this, I used the approach below.

First, I present a pack of items the student likes (4 pack of Muscle Milk for this student). Use a Jamboard to show a 4 pack and the price of the 4 pack (photo on left). Then I “pull out” the 4 individual bottles and divide the $8 among the bottles to show $2 for each bottle. Finally, I have the student shop for packs of items at a grocery store or Amazon and compute the price for 1 item using a mildly scaffolded handout.

I Follow the same steps for ounces or pounds but show how 4 oz is divided into single ounces (in lieu of a pack divided into single items). Then the student shops for items that can easily be divided to get a unit cost.

There are several layers to solving equations that can be unpacked using a task analysis approach. This includes written and mental steps (such as what we teachers mean when we tell a student to do the same thing to “both sides of the equation”). Here is how I develop the concept of equations and solving.

To unpack the layers for students, I have had a lot of success with the scaffolded handouts below (see last photo of example of what to write.) Here is a link to a Dropbox folder with all 4 handouts, in WORD format. Feel free to use and revise as desired.

Money is intuitive for many students, even when the underlying math is not. For example, I often find that students who do not understand well the concept of Base 10 place value do understand $10 and $1 bills. With this in mind, I created a virtual scaffolded handout that builds on student intuitive understanding of the bills through the use of $10 and $1 bills to represent regrouping. Here is a video showing how I use it.

In the photo below, at the top, a $10 bill was borrowed into the ones column. The reason is that $7 needed to be paid (subtracted) but there were only five $1 bills. In the photo below, bottom, the $10 bill was converted into ten $1 bills. On the left side of the handout, the writing on the numbers shows the “mathy” way to write out the borrowing.

Once the student begins work with only the numbers, the $10s and $1s can be referenced when discussing the TENS and ONES places of the numbers. This will allow the student to make a connection between the numbers and their intuitive, concrete representation of the concept.

Counting out the total value for a set of coins can be very challenging for students who struggle with money.

Here is a video showing how to use a WORD document table a former colleague and I created to support students in a life skills class. The video shows how this handout is used but does so with a virtual version the can be completed on the computer (see image below). Here is a link to the virtual document.

The following are screen shots of online math worksheet websites I use. The variety and the options in the criteria you select for your worksheets for some of these sites allows for differentiation in the classroom.

I will start with my favorite site, Math-Aids.com. This site allows for dynamic selection of criteria for each handout (see 2nd photo below) such as choosing the types of coins in problems for counting out the total value. The coin images are outstanding! It also offers content up to Calculus.

Super Teacher Worksheets is often used elementary schools. It offers content in science and language arts as well. It requires a $25 annual subscription which I easily find to be worthwhile.

Common Core Sheets is very useful site if you want to find handouts for specific standards by grade level (see 2nd photo below). It offers multiple versions of each handout.

Dads Worksheets provides a large bank of worksheets – multiple versions of each worksheet.

Math Worksheets 4 Kids offers multiple versions of each worksheet and content in science and language arts. There are many worksheets that provide unique support in how the work is presented, e.g. the Ratio Slope worksheet shown in the 2nd photo below.

Worksheet Works is my 2nd favorite. It offers options in the criteria you choose, e.g. difficulty level (2nd photo below). They also offer unique types of handouts such as a maze with math problems to solve to find the path (2nd photo).