Category Archives: Response to Intervention (RTI or SRBI)

College Preparation and Retests

In a recent Facebook group for high school math teachers, an interesting discussion arose about retests and how to respond to students who have a low score on a given test. A common perspective that I shared for a time is that we should eschew retests as we are preparing students for college. In this post I offer counter points to this argument, and attempt to unpack the college preparation issue. The focus is on math.

It appears that colleges universally have placement tests. Below are excerpts from universities in Florida, Texas, California, Washington, Nebraska, and Connecticut, along with a sprinkling of 2 year schools from some of these states. If a student makes an A in precalculus in high school, that does not qualify the student to take calculus or even to retake precalculus! A test score is required, whether it is the SAT or the college’s placement test. Indirectly, this appears to show that the colleges are not taking high school results at face value. Whether the student took a retest or not, or didn’t need one he or she still must prove content mastery to some degree.

Then consider what is happening at colleges. Dr. S.A. Miller of Hamilton College wrote an essay about grades in college (excerpt below left). In it, she cites Dr. Stuart Rojstaczer‘s article in the Christian Science Monitor about grade inflation in college. The focus here is not on how the grades are inflated, e.g., with a retest, but the evidence shows grades skewed towards the higher end and has increasingly become more pronounced over the past few decades. The rigor and accountability cited in the argument against retests is not what it appears.

Given the need to demonstrate content mastery through placement tests, and college academic expectations that are not quite what they seem, it makes sense to focus on mastery of content. This is illustrated by what is happening in Connecticut, a state that ranked 3rd in US News and World Report state K-12 education rankings and 2nd in Wallet Hub’s rankings of state school systems.

In a Connecticut State Board of Education report, over 40% of students entering a state community college or state university (not including UCONN) needed to take a remedial course.

If this is happening in Connecticut, it may shed light on what is happening in other states. It certainly appears that there is something not working in terms of content mastery in math. I am not attempting to place blame and certainly do not suggest that the problem is a lack of retests. Another issue is self-help study skills and how well students are playing their part of the learning process. A report of a survey conducted by Manchester Community College in Connecticut included the most common reason people struggle in their classes. The 2nd most cited response, by 60% of faculty and 61% of students, was that the students do not know how to study effectively.

It appears the issue of retests is more an issue of why is there a need for retests to be considered and the implications of not filling in the content knowledge gaps. I will conclude with a bit of irony. UCONN is ranked as the 23rd best public university. Students are allowed 3 attempts on the math placement test.

Tagged , , , ,

Catching Up in Math is Often Akin to a Stuffing Suitcase

In working with students with special needs on math programming and services, a common and major issue is that the student is behind and there is a tension between filling in gaps and addressing grade level content. Let me unpack this (pun intended).

  • There is no single grade level for math, as is the case for reading. Math progression is more like a web, not a line. For example, if a student can do 5th grade geometry but only 3rd grade level fractions, do we average out the grade level math to be 4th grade? (No.) Do we identify the student as working at a 3rd grade level? (No.) 5th grade level? (No.)
  • Like a suitcase, there is a capacity to the daily time a student has for school services. I often encounter situations in which the services recommended involve the student working on grade level content and catching up on the gaps during support time. If the student has only been learning 75% of the math content each year, he or she needs that support time to help learn the new content to get closer to 100%. There is too much being stuffed into the suitcase. Something has to give.
  • The focus of the services and programming often shifts away from post-secondary plans, which has long term implications as I wrote previously using the falling dominoes analogy.

There are two recommendations I make in regards to addressing the gaps.

  1. Maximize the efficiency of the support time by having the support class focus on the prerequisite skills for current or upcoming topics.
  2. Use triage to shift focus to the priority topics. For example, the parents of a student in 7th grade but working on math from lower grade levels wanted to pursue a math track that would allow the student to go to community college. I mapped out a long range plan (image below) that focuses on algebra as that is the type of math most likely encountered in a math requirement. Here is another plan which was to prepare a student to possibly work in a field related to cars.
Tagged , , , , , , , , , ,

Asking for Examples of Mastery for IEP Objectives

To ensure the IEP team is on the same page as to what mastery of an objective looks like, the person writing the objective can take two steps:

  1. provide an example problem that would be used to assess mastery (and the example problem would have the same language as used in the objective)
  2. provide an example of a response to the example problem cited above that would be considered mastery level work

The graph below is not data. A graph is a representation of summary statistics. This summarizes the data.

The chart below does not show the actual prompts, e.g. what number was shown to Kate, but it does show the individual trials. This is data, with a summary statistics at the end of each row. Here is a link to more discussion about data, with an example of a data sheet I use.

 

The data shown below addresses the student’s effort to solve an equation. Problem 21 is checked as correct and the error in problem 22 is identified. I can use this data to identify where the student is struggling and how to help. NOTE: the math objective would use the same verb as the problem: solve the linear equation.

 

The excerpt of a data sheet, shown below shows trials in a student’s effort to compare numbers.

 

Data below shows a student’s effort to evaluate integer expressions.

 

This applies to all areas beyond math. The chart above or the data sheet I linked above show data sheets that indicate the prompt and the results, with notes. For example, if I am asking my son to put on his shoes, each row of the data sheet is a trial with the outcome and notes.

Tagged , , , , ,

Token Sheet to Address Target Behaviors

Perhaps the vast majority of students with disabilities need support with math. Their challenges with math can be directly related to their disability or can be the result the effects of an ongoing struggle with math. The later results in what is termed secondary characteristics.

When I work with students with a disability, I first seek out background information about the student to identify what interests them, what reinforcers (rewards) can be used to enhance their performance, and what challenges and behaviors need to be addressed. Upon gather this information, I often decide to use a token sheet that is personalized for each student.

Below is an image of such a token sheet. At the start of our work together I felt the student in question needed immediate reinforcement for work completed to get him into a groove. I was also targeting a behavior in which he would draw dots on each digit he wrote, which slowed him down considerably. He would earn a Scooby (I would circle it) in the middle column for completing his work and an extra Scooby in the right column if he wrote digits appropriately (no dots). After 2 sessions, his dot writing dropped significantly to the point that I was able to remove the column on the right. As you can see at the bottom, 5 Scoobies resulted in iPad time.

This can be particularly effective for students who have more severe math anxiety, a fear of failure, or have ADHD. Such a token sheet can be included in the accommodations page of the IEP.

Tagged , , , , , , ,

Making Sense of Fractions – Regrouping with Mixed Numbers

It is easy to get caught up in the steps and rote memorization when working with fractions. The brain processes information more effectively when the information is meaningful. ADHD makes paying attention to rote memorization of steps even more challenging.

Below is an excerpt of work I completed with a middle school student who has ADHD. This was completed extemporaneously as intervention (you see his initial attempt was incorrect) but can be used as Universal Design in whole class instruction.

Here is a break down of how I helped the student after seeing his mistake in his initial attempt. First, I modeled the first mixed number as pizza pies.

Then I presented the problem in pizza terms. “You have 3 pies and 1 slice and you are going to give me 1 pie and 2 slices. Do you have enough slices?” <wait for response> “You don’t, so what can we do?” <wait for response> “We cut up one of the pies.” I have the student cut the pie into fourths.

I then make the connection with the mixed number and guide the student to taking away 1 pie and writing 4/4. This provides more concrete meaning for writing 1 as 4/4.

In turn, this provides meaning for the new mixed number and meaning for the subtraction of the whole numbers (pies) and the fractions (slices).

 

Tagged , , , , ,

Meeting Needs Part 2

In the past year I have helped two 7th grade students who are categorized as twice exceptional (2e). Both had more severe math anxiety that impacted their performance and masked their ability. When we started both were working on elementary school level math. Within a couple of months both were working on algebra. (Both had gaps but I was testing their ability by test running higher level math with them.)

As I shared in a previous post my approach is to focus on meeting needs. I want to elaborate on this. My secret is I listen to the student… In other words, the student drives the instruction.

Here’s an analogy. You go to a frozen yogurt or ice cream store and they offer you a sample. You try a couple then go with the one you like. That’s what I do. I try out different types of instruction (samples of the ice cream) and the student tells me (verbally or by the response to the instruction) which one they want. That is the I in IDEA and in IEP.

icecream samples

Tagged , , , , , ,

Meeting Student Needs

One of my beliefs about the education is that teaching is built on a delivery based model. If teachers take certain steps the learning will happen – an educator’s version of Field of Dreams. Often the result is a focus on having students assimilate into the teacher’s class environment. 

assimilate

I subscribe to the exact opposite approach. Teacher’s should accommodate student needs as the focus of the classroom environment.

accommodate

Below is a quote from a parent whose child benefited from my effort to be hyper responsive to her daughter’s instructional needs. The child had veto power over any activity or strategy I attempted. If what I used didn’t work for her I would try something else.

“Working with Randy has been life changing for my daughter. 

Math was her biggest source of frustration and no matter how hard she worked it never made sense. Teachers would tell me she was ‘doing awesome’ but she was really just following steps without understanding any of it. I thought she was going to go through life unable to even buy a candy bar without being taken advantage of.

Randy changed all that. He is able to break math down in a way that makes sense. He is able to identify what is confusing her and find different ways to explain it. He makes it meaningful for her.”

Tagged , , , , ,

Juggling Gaps and New Content

In math, many students with special needs fall behind. What results is a Catch-22 in programming and services. If the student is provided extra time to work on the gaps, he or she likely falls behind with current content. If the student is provided extra time to receive support for current topics, the gaps are not addressed

In both cases the extra support time can actually be counterproductive.

  • The focus on gaps likely results in the student working on different math topics which in effect means the student has TWO math classes – just what a student with math anxiety doesn’t need.
  • The focus on current topics means the student is trying to learn math topics for which he or she doesn’t have the prerequisite skills needed.

I recommend identifying the prerequisite skills for a current math topic and address ing these skills concurrently in math support or during the summer. For example, I used a Common Core coherence map (top photo below) to identify Common Core prerequisite standards for the standards a student faces in her upcoming school year. Then I listed these with each grade level standard (bottom photo below). The prerequisite skills can be identified using a task analysis approach as well. Screenshot 2018-06-12 at 6.03.52 AMScreenshot 2018-06-12 at 5.45.22 AM

This approach allows for a systematic approach to fill in gaps and to prioritize when they are to be addressed. When implemented effectively, the student can see the immediate benefit of the support time – it helps them in math class. Even better, the support teacher can match instruction and work with what is covered in math class.

Tagged , , , , , ,

RTI – Response to Intervention

RTI Process

The photo above shows a model of the RTI (called SRBI in Connecticut) process. RTI is a systematic approach to addressing student academic needs. Here is a link to a video explaining the process and below is an outline of the process:

  1. Students are served in a classroom that provides high quality initial instruction. This includes the use of UDL, differentiation, formative assessment, instructional strategies to make content meaningful and concrete and to meet student needs in general. The general classroom is Tier I.
  2. Assessment is used to evaluate student progress AND the effectiveness of the instruction. If students are not understanding a math topic or unit (as demonstrated by data not observation) the student can be moved into Tier II which involves intensified focus of instruction and in a small group.
  3. Assessment is used again. If the student is not making sufficient progress despite changes in instruction the student can be moved into Tier III which involves maybe 1 on 1 or 1 teacher and 2 students. The level of intensity is ramped up further.

Here are a couple of key components:

  • The initial classroom includes an effort to meet individual needs.
  • Data is the key to decision-making. Assessment is objective.
  • The programming is evaluated using the data.
  • RTI is included in IDEA 2004.
  • Student placement at the different tiers is fluid. Students are moved into and out of tiers based on data.
Tagged , , , , ,
%d bloggers like this: