## This post provides a handout that guides students through the various steps for completing the square to transform an equation into vertex form. Students are guided through each step in isolation.

### Overview

Students are presented each step in a separate chunk of the lesson. Then the steps are chained together, with scaffolding that is faded. This is a different approach than presented in a previous post. The chunks, examples, and scaffolding help make students more independent in completing the work. This frees up the teacher to provide more 1 on 1 support.

### Chunks of the Lesson

The initiation addresses prerequisite skills: factoring, perfect squares, fractions, and doubles. In lieu of having students divide by 2, I focus on identifying fractions that add to the linear coefficient as you will see in the second page.

### Desmos Activity to See Completing the Square

To introduce completing the square, I recommend a visual activity like this one from Desmos.

The students identify the constant that results in a perfect square. They do so by identifying doubles that result in the linear coefficient (e.g., 6 = 3 + 3). The examples help guide them through this process. This section could be presented after a hands on activity on

Students are then tasked with factoring perfect squares in isolation, including those with fractions. The doubles are modeled for whole numbers first, generalized to fractions.

At this point, the students have identified the constant to complete the square and then factored expressions. The next sections have students complete the square and then factor in equations. Note that the equations are structured as a step after the students would have subtracted the original constant, leaving the quadratic and linear terms on the right.

The last section chains all the steps together, first with scaffolding then without. Additional practice would be generated with other handouts that have problems in isolation.

### Access to the Handout

Here is a link to the handout.