Category Archives: instructional strategies

Strategy to Individualize Instruction

It is difficult to individualize instruction in a whole class or small group setting. I created and taught the curriculum for a Consumer Math course at the high school where I teach. For a class of 10-12 students, all with an IEP, I developed an approach that allowed me to individualize the instruction for each students.

In the photo below is an example of a folder set up I used with the students in Consumer Math. Each student would have a dedicated folder, kept in the room and updated daily. The smaller paper shows the individualized agenda. The other paper shows an example of how the folder can be used as a resource. Student computer login information, accommodations like a multiplication table or notes can be secured inside the folder. The agenda would be changed out each day. (In case you are wondering about the label in the agenda, “Math Group 4.” This particular folder was used in a special education training session for teacher candidates.)

individualized folder


Tagged , , , ,

Introduction to Equations – (Meaning Making)

This is a meaning making approach to introducing equations. I will walk through the parts shown in the photo in the space below this photo. (A revised edition of this handout will be used in a video on this topic.)

intro to equations

First I explain the difference between an expression (no =) and an equation (has =). An equation is two expressions set equal to each other (21 is an expression).

intro to equations definition equation

I then develop the idea of a balanced equation and will refer to both sides of the see saw as a prelude to both sides of the equation. I also focus on the same number of people on both sides as necessary for balance.intro to equations balanced vs unbalanced

At this point I am ready to talk about an unknown. Here is the explanation I use with the photo shown below.

  • I start with the seesaw at the top. The box has some guys in it but we don’t know how many.
  • We do notice the seesaw is balanced so both sides are equal.
  • This means there must be 2 guys in the box.
  • I follow by prompting the students to figure out how many guys are in the box(es) in the bottom two seesaws.
  • Finally, I explain that the number of guys in the box is the solution because it makes the seesaw balanced.

intro to equations definition solution

There are multiple instructional strategies in play.

  • Connection to student prior knowledge – they intuitively understand a seesaw. This lays the foundation for the parts of an equation and the concept of equality.
  • Visual representation that can be recalled while discussing the symbolic representation, e.g. x + 1 = 3
  • Meaning making which allows for more effective storage and recall of information.
Tagged , , , , , , , ,

Visuals Aid Memory

This research has major implications for math for students with special needs…but some of us already knew this!

brain memory

Tagged , , ,
%d bloggers like this: