## Trig Fingers

**Tagged**angles, fingers, trig, trigonometry

.

We explain steps in great detail to students but often omit the underlying concept. The topic of adding or subtracting fractions with unlike denominators is an example of this.

The example above right is a short cut for what is shown above left. These short cuts, which math teachers love to use, add to the student’s confusion because these rules require the student to use rote memorization which does is not readily retained in the brain.

I suggest using what I call a meaning making approach. I present the student 2 slices of pizza (images courtesy of Pizza Fractions Game) and explain the following setting. “You and I both paid for pizza and this (below) is what we have left. You can have the pizza slice on the left and I will have the pizza slice on the right. Is that OK?” The student intuitively understands that it is not because the slices are different sizes. I then explain that when we add fractions we are adding pizza slices so the slices need to be the same.

I then cut the half slice into fourths and explain that all the slices are the same size so we can now add them. Then the multiplying the top and bottom by 2 makes more sense.

In general math is taught by focusing on the steps. Conduct a Google search for solving equations and you will see the steps presented (below). You need a video to help your student understand solving and you typically get a presenter standing at the board talking through the examples. (I’ve posted on my approach to solving equations.)

When the math is taught through the skill approach the student may be able to follow the steps but often does not understand why the steps work (below). The brain wants information to be meaningful in order to process and store it effectively.

To help flesh this situation out consider the definitions of concept and skills (below). Concept: **An ****idea**** of ****what**** something is or ****how**** it works – WHY. **Skill: **“****Ability****” to execute or perform “****tasks****” – ****DOING.**

Here is how the concept first approach can play out. One consultation I provided involved an intelligent 10th grader who was perpetually stuck in the basic skills cycle of math (the notion that a student can’t move on without a foundation of basic skills). He was working on worksheet after worksheet on order of operations. I explained down and monthly payments then posed a situation shown at the top of the photo below. I prompted him to figure out the answer on his own. He originally forgot to pay the down-payment but then self-corrected. Then I showed him the “mathy” way of doing the problem. This allowed him to connect the steps in solving with the steps he understood intuitively, e.g. pay the $1,000 down payment first which is why the 1000 is subtracted first. Based on my evaluation the team immediately changed the focus of this math services to support algebra as they realized he was indeed capable of doing higher level math.

When I train new math and special education teachers I explain that teaching math should be like feeding a hot dog to a baby in a high chair. Cut up the hot dog into bite-sized pieces. The baby will still consumer the entire hot dog. Same with math. Our students can consume the entire math topic being presented but in smaller chunks.

My approach to doing this is through a task analysis. This is very similar to chunking. It is a method to cut up the math into bite-sized pieces just as we would break up a common task for students with special needs.

While waiting for my coffee order at a Burger King I saw on the wall a different version of a task analysis. It was a step by step set of directions using photos on how to pour a soft cream ice-cream cone. I thought it was amazing that Burger King can do such a good job training its employees by breaking the task down yet in education we often fall short in terms of breaking a math topic down.

One of my beliefs about the education is that teaching is built on a delivery based model. If teachers take certain steps the learning will happen – an educator’s version of Field of Dreams. Often the result is a focus on having students **assimilate** into the teacher’s class environment.

I subscribe to the exact opposite approach. Teacher’s should **accommodate** student needs as the focus of the classroom environment.

Below is a quote from a parent whose child benefited from my effort to be hyper responsive to her daughter’s instructional needs. The child had veto power over any activity or strategy I attempted. If what I used didn’t work for her I would try something else.

“Working with Randy has been life changing for my daughter.

Math was her biggest source of frustration and no matter how hard she worked it never made sense. Teachers would tell me she was ‘doing awesome’ but she was really just following steps without understanding any of it. I thought she was going to go through life unable to even buy a candy bar without being taken advantage of.

Randy changed all that. He is able to break math down in a way that makes sense. He is able to identify what is confusing her and find different ways to explain it. He makes it meaningful for her.”

Below is a model for information processing (retention and retrieval). Here are a couple key points I want to highlight:

- A lot of information is filtered out so what gets through? Information that is interesting or relevant.
- Information that is connected to prior knowledge, is relevant or that is organized has a better change of being stored effectively for retrieval.
- Working memory has a limited capacity. Consider what happens to your computer when you have a lot of apps open. Your computer may start to buffer which is basically what happens to our kiddos if instruction involves opening too many apps in their brains.
- Long term memory is basically retrieval of information. Think a student’s book bag with a ton of papers crammed in it. How well can he or she find homework? Compare this to a well maintained file cabinet that has a folder labeled homework with the homework assignment in question stored in this folder. That paper is much easier to retrieve. This is analogous to long-term memory. If the information is relevant or meaningful it will be stored in the file cabinet folder and more easily retrieved. In contrast, rote memorization like the rules teachers present students are papers crammed into an overflowing bookbag.

%d bloggers like this: