Category Archives: Concrete-Representation-Abstract

Place Value Representation

Here is an easy way to create and implement strategy to unpack place value for students (created by one of my former graduate students). I suggest using this after manipulatives and visual representations (drawing on paper) in a CRA sequence. It is hands on but it includes the symbolic representation (numbers). Hence is another step before jumping into the mathy stuff.

pace value representation just numbers.jpg

The focus can shift to money as well.

2017-06-07 18.06.49

Advertisements
Tagged , , , , , ,

The I in Instruction can be the same I in IEP and IDEA.

I am consistently surprised by the reliance on canned items for students who struggle. There are different reasons students struggle but we know that there are secondary characteristics and factors that inhibit effective information processing that can be addressed with some Individualization.

In a math intervention graduate course I teach at the University of Saint Joseph, my graduate students are matched up with a K-12 student with special needs. The graduate student implements instructional strategies learned from our course work. Below is the work of one of my grad students. From class work and our collaboration we developed the idea of using the fish and a pond as base 10 blocks for the student my grad student was helping. He likes fish and fish will get his attention. The grad student explained that if he has 10 fish the 10 fish go into a pond. In the photo below the student modeled 16 with a TEN (pond) and 6 ONES (fish).

2018-07-26 17.13.05.jpg

Similarly, another student likes Starbursts and that student’s respective grad student created Starburst packs to represent TENS and ONES (there are actually 12 pieces in a pack so we fudged a little).  The point is that it was intuitive and relevant for the student. The student understood opening a pack to get a Starburst piece.

2018-07-26 17.41.15

 

Tagged , , , , , , ,

More Than: Concept and Symbol

The alligator eats the bigger number is the common approach for student to use inequality symbols (<  > <  > ). I find that students remember the sentence but many do not retain the concept or use the symbols correctly, even in high school. The reason, I believe, is that we introduce additional extraneous information: the act of eating, the mouth which is supposed to translate into a symbol, the alligator itself. For a student with processing or working memory challenges this additional information can be counter productive.

alligator eats bigger number

I use the dot method. By way of example here is the dot method. I show the symbols and highlight the end points to show one side has 2 dots and the other, 1.

Compare-with-Dots

Then I show 2 numbers such as 3 and 5 and ask “which is bigger?” In most cases the student indicates 5. I explain that because 5 is bigger it gets the 2 dots and then the 3 gets the 1 dot.

3 dots 5

I then draw the lines to reveal the symbol. This method explicitly highlights the features of the symbol so the symbol can be more effectively interpreted.

3 less than 5.

That is the presentation of the symbol. To address the concept of more, especially for students more severely impacted by a disability, I use the following approach. I ask the parent for a favorite food item of the student, e.g. chicken nuggets. I then show two choices (pretend the nuggets look exactly the same) and prompt the student to make a selection. This brings in their intuitive understanding of more.

concept of more chicken nuggets just plates

I think use the term “more than” by pointing to the plate with more and explain “this plate has more than this other plate.” I go on to use the quantities.

concept of more chicken nuggets more than words

Finally, I introduce the symbol to represent this situation.

concept of more chicken nuggets more than symbol

Below is the example my 3rd grade son used to explain less than to a classmate with autism. This method worked for the classmate!

Lucas less than example

Tagged , , , , , , ,

Sausage Fractions – Real Life Example

I have 3 kids and was cooking sausage for them.

2019-01-31 07.46.25.jpg

There were 5 sausage links available (below). How do I give each the same amount? Fractions!

dividingupsausage1

Each child gets a full sausage link.

dividingupsausage2

I then cut  the remaining 2 sausage links into 3 parts, 1 for each child. 1/3 of a link.

dividingupsausage3

 

Each child gets 1/3 and another 1/3 or 2/3. So they get 1 full link and 2/3 of a link or 1 2/3. This is an entry point into mixed numbers (whole number and a fraction).

dividingupsausage4

 

 

Tagged , , , , ,

Common Denominator – Why?

We explain steps in great detail to students but often omit the underlying concept. The topic of adding or subtracting fractions with unlike denominators is an example of this.

subtracting unlike denominators     adding unlike denominators

The example above right is a short cut for what is shown above left. These short cuts, which math teachers love to use, add to the student’s confusion because these rules require the student to use rote memorization which does is not readily retained in the brain.

I suggest using what I call a meaning making approach. I present the student 2 slices of pizza (images courtesy of Pizza Fractions Game) and explain the following setting. “You and I both paid for pizza and this (below) is what we have left. You can have the pizza slice on the left and I will have the pizza slice on the right. Is that OK?” The student intuitively understands that it is not because the slices are different sizes. I then explain that when we add fractions we are adding pizza slices so the slices need to be the same.

fourth pizza slice         half pizza

I then cut the half slice into fourths and explain that all the slices are the same size so we can now add them. Then the multiplying the top and bottom by 2 makes more sense.

fourth pizza slice          2 fourths pizza slices

 

 

Tagged , , , , , , , , , ,

Concepts vs Skills – Need Both

In general math is taught by focusing on the steps. Conduct a Google search for solving equations and you will see the steps presented (below). You need a video to help your student understand solving and you typically get a presenter standing at the board talking through the examples. (I’ve posted on my approach to solving equations.)

When the math is taught through the skill approach the student may be able to follow the steps but often does not understand why the steps work (below). The brain wants information to be meaningful in order to process and store it effectively.

calvin hobbs toast

To help flesh this situation out consider the definitions of concept and skills (below). Concept: An idea of what something is or how it works – WHY. Skill: Ability” to execute or perform “tasks” – DOING.

definition conceptdefinition skill

Here is how the concept first approach can play out. One consultation I provided involved an intelligent 10th grader who was perpetually stuck in the basic skills cycle of math (the notion that a student can’t move on without a foundation of basic skills). He was working on worksheet after worksheet on order of operations. I explained down and monthly payments then posed a situation shown at the top of the photo below. I prompted him to figure out the answer on his own. He originally forgot to pay the down-payment but then self-corrected. Then I showed him the “mathy” way of doing the problem. This allowed him to connect the steps in solving with the steps he understood intuitively, e.g. pay the $1,000 down payment first which is why the 1000 is subtracted first. Based on my evaluation the team immediately changed the focus of this math services to support algebra as they realized he was indeed capable of doing higher level math.

solving equation with conceptual understanding first

Tagged , , , , , , , , , , , ,

Simplifying Expressions (Combine Like Terms)

Simplifying expressions (see photo below) is one of the most challenging algebra tasks for many students receiving special education services. A major problem is that it is typically presented as symbol manipulation…addressed in very symbolic form.

combine like terms

My approach is to make math relevant and more concrete. Below is a scaffolded handout I use to help unpack the concept. In the handout I start with items the student intuitively understands, tacos and burritos or tacos and dollar bills. In the top left of this handout the student is asked how many tacos he or she has. 3 tacos eventually is written as 3T. See next photo to see how the handout is completed as NOTES for the students.

simplifying expressions tacos

As I work with the problems below I remind the student that the “T” stands for taco so “3T” stands for 3 tacos. This takes the student back to a more concrete understanding of what the symbols mean.

simplifying expressions tacos completed

To address negatives I use photos of eating a taco or burrito. “-2T” is eating 2 tacos.

So “3T – 2T” means I have 3 tacos and ate 2. I have 1 taco left… 1T. For students who may need an even more concrete representation, use actual tacos or other edible items.

simplifying expressions tacos with negatives

 

Tagged , , , , , , , ,

Authentic Activities – Money and Prices

Below is a photo of a typical worksheet for money. I worked with a parent of a high school student severely impacted by autism and she explained that her son worked on nothing but worksheets when he worked on math. For students with more severe disabilities the worksheet is not real or meaningful. The photos and the setting is abstract.

adding-money-worksheet-1

Below is a photo of shelves in a mock grocery store we set up at our school for students who were in a life skills program. They would have a shopping list, collect the items in a basket then compute the total cost. We had a mock register set up (eventually we procured an actual working register) and the students made the same types of calculations they would on a worksheet but in an authentic setting, which was more concrete. We would start with simple money amounts, e.g. $1.00 then make the prices increasingly more challenging, e.g. $1.73.

mock grocery store

Tagged , , , , , , ,

Introduction to Solving Equations

I introduce solving equations by building off of the visual presentation used to introduce equations. The two photos below show an example of handouts I use. Below these two photos I offer an explanation of how I use these handouts.

intro to solving equations

2019-01-18 22.16.51-2

First I develop an understanding of a balanced equation vis-a-vis an unbalance equation using the seesaw representation.intro to equations balanced vs unbalanced

I then explain that the same number of guys must be removed from both sides to keep the seesaw balanced.

intro to solving equations balance and unbalanced

I then apply the subtraction shown above to show how the box (containing an unknown number of guys) is isolated. I explain that the isolated box represents a solution and that getting the box by itself is called solving.

intro to solving equations adding

I use a scaffolded handout to flesh out the “mathy” steps. This would be followed by a regular worksheet.

solving 1 step equations add scaffolded

I extend the solving method using division when there are multiple boxes. I introduce the division by explaining how dividing a Snickers bar results in 2 equal parts. When the boxes are divided I explain both boxes have the same number of guys.intro to solving equations multiplying

The students are then provided a scaffolded handout followed by a regular worksheet.solving 1 step equations multiply scaffolded

Tagged , , , , , , , , , ,

Basic Skills Older Students

A widespread problem at the secondary level is addressing basic skills deficiencies – gaps from elementary school. For example, I often encounter students in algebra 1 or even higher level math who cannot compute problems like 5÷2. Often the challenges arise from learned helplessness developed over time.

How do we address this in the time allotted to teach a full secondary level math course? We cannot devote class instruction time to teach division and decimals. If we simply allow calculator use we continue to reinforce the learned helplessness.

I offer a 2 part suggestion.

  1. Periodically use chunks of class time allocated for differentiation. I provide a manilla folder to each student (below left) with an individualized agenda (below right, which shows 3 s agendas with names redacted at the top). Students identified through assessment as having deficits in basic skills can be provided related instruction, as scheduled in their agenda. Other students can work on identified gaps in the current course or work on SAT problems or other enrichment type of activities.
  2. Provide instruction on basic skills that is meaningful and is also provided in a timely fashion. For example, I had an algebra 2 student who had to compute 5÷2 in a problem and immediately reached for his calculator. I stopped him and presented the following on the board (below). In a 30 second conversation he quickly computed 4 ÷ 2 and then 1 ÷ 2. He appeared to understand the answer and this was largely because it was in a context he intuitively understood. This also provided him immediate feedback on how to address his deficit (likely partially a learned behavior). The initial instruction in a differentiation setting would be similar.

2018-12-20 11.20.25

Tagged , , , , , ,
%d bloggers like this: