Category Archives: Concrete-Representation-Abstract

Simplifying not so Simple Equation Solving

Several special ed teachers identified solving multi-step equations as the most challenging math topic to teach in middle school math. Here is my approach to teaching multi-step equations like 3m + 4m + 1 = 15. .

First, I use a task analysis approach to break down the math topic like we cut up a hotdog for a baby in a high chair. MOST of the steps involved are prior knowledge or prerequisites skills. I present these in a Do Now (warm up, bell ringer, initiation) – see image below. This allows me to fill in the gaps and to lay the foundation for the lesson. The prerequisite skills include simplifying expressions and solving 2 step equations. I also present meaning for the equation with a relevant real life problem that is modeled by this equation. By attempting the walkathon problem without the “mathy” approach, the students will more likely understand the equation and why they add 3m and 4m.

After reviewing the Do Now I use Graspable Math, which is a free online application that allows users to enter their own expressions and equations. These can be manually simplified and solved by moving parts around. Here is a tutorial on how to do this. This allows them to manually work with the simplifying and the equation before working on the handout, in a concrete-representational-abstract approach.

This is followed by a scaffolded handout with the use of color coding. I have student work on the first step in isolation as that is the new step (the other steps are prior knowledge and were addressed in the Do Now). This avoids all the work on the other steps that can result in sensory overload and allows me to address mistakes in the new content immediately.

This handout can have the equations removed and be used as a blank template to follow. In turn this would be followed with regular solving worksheets.

Tagged , , , , ,

Introduction to Unit Cost (Unit Rate)

Unit rate (e.g., hamburger meat on sale for $2.39 per pound or you make $13 per hour) is an incredibly important topic in middle and high school. First, unit rates and unit costs are common in life. Second, in the Common Core State Standards math categories you can see that Ratios and Proportions (which includes unit rate) are a 6th and 7th grade topic and are then replaced by Functions in 8th grade. Below is a photo showing a graph of a function you can see that the slope in an application is a unit rate.

The unit rate is also conceptually challenging whether it is in a function or is a unit cost at the store. This is a major sticking point for many students in special ed who have fallen behind. To address this, I used the approach below.

First, I present a pack of items the student likes (4 pack of Muscle Milk for this student). Use a Jamboard to show a 4 pack and the price of the 4 pack (photo on left). Then I “pull out” the 4 individual bottles and divide the $8 among the bottles to show $2 for each bottle. Finally, I have the student shop for packs of items at a grocery store or Amazon and compute the price for 1 item using a mildly scaffolded handout.

I Follow the same steps for ounces or pounds but show how 4 oz is divided into single ounces (in lieu of a pack divided into single items). Then the student shops for items that can easily be divided to get a unit cost.

Tagged , , ,

Introduction to 2 Variable Inequalities

Previously, I shared how I use a Google Jamboard to introduce 1 variable linear equalities with a focus on conceptual understanding. I use the same approach for the 2 variable version (example problem below).

A conceptual gap that typically arises is the students do not understand what the shading represents. This is what I am addressing from the start using a Jamboard. First, the focus is on understanding the inequality and identifying a single point that works (below).

The next step is for students to determine more points that are solutions for the inequality, with no equal to part. (below).

The equal to part is addressed separately (below).

The equal to and the greater parts previously addressed are combined together.

The inequality is will be expanded to include an operation (+ 2) with a focus on the equal to part first.

The greater than with no equal to is addressed.

Then the equal to and greater than are addressed sequential. The equal to results in dots in a straight line and in lieu of plotting all the points, a line is drawn (building on the intro to 1 variable inequalities). This is followed by the greater than part and shading in lieu of plotting all of the dots above. THIS is where they gain an understanding of what the aforementioned shading is.

Finally, the dashed line is addressed by showing, as was done with the 1 variable inequalities, that there is a cutoff point that is not part of the solution set so in lieu of plotting a bunch of open circles, a dashed line is drawn.

Tagged , , , ,

Life Skills Math – Not So Easy

As I wrote previously, shopping is dense with math tasks as are grocery stores. Here are some division situations that are sneaky challenging and require a student to know when and why to divide before even reaching for the calculator. I will use these to help illustrate the fact that life skills math is not simply counting money or using a calculator to add up prices. There is a great deal of problem solving and thinking skills that need to be developed.

For example, if a student has $60 to spend on gifts for her 3 teachers the student needs to understand that she can spend up to $20 per teacher (before even talking about taxes).

An entry point for division can involve a dividing situation the students intuitively understand, e.g., sharing food. Start with 2 friends sharing 8 Buffalo wings evenly (below).

This can lead into the 3 teachers sharing the $60 evenly (below). In turn, this can be followed by the online shopping shown above.

This approach can be used to develop an understanding of unit cost (cited in the shopping is dense post). Start with a pack of items to allow the students to see the cost for a single item before getting into unit cost by ounces, for example.

I have had success with teaching these division related concepts using sheer repetition as much of our learning is experiential learning. Using a Google Jamboard as shown in the photos allows for the repetition.

Tagged , , , , , , , , ,

Introduction to Inequalities

For students with special needs, the teacher speaking “math” to students sounds like the teacher from the Peanuts cartoons.

This is apparently the case when students are learning about inequalities such as x < 4 because I have seen many high school and college students struggle with this topic. The challenge is that teachers are often focused on the math symbols and steps as opposed to the math concepts. In contrast, below are Google Jamboard slides I use (you can make a copy and edit) to introduce the concept of inequalities.

First, I start with a topic of interest and possibly prior knowledge for the students (age to get a drivers license – below). I present the idea of an inequality in context before I show any symbols. In this case, students identify ages that “work”.

Then I introduce the symbol (below). In this case, I include equal to for the inequality (x > 16 vs x > 16). The students plot the same points then we discuss that there are many other ages that work. These ages are called solutions. We put a closed circle on all of the solutions. Then discuss that ages are not exactly whole numbers so we can plot points on all the decimals. Then we discuss that the solutions keep going to the right so we keep drawing dots to the right. There are so many dots we draw a “line” instead of all the dots.

Then we do the same steps for a situation in which the number listed (52 in the case below) is NOT a solution. The students put dots closer and closer to the number but cannot put a closed circle on 52 as a solution (top photo below). Then we present the symbols and talk about the number as a cutoff point that we get really close to but cannot touch. Therefore we use an open circle to show the number is NOT a solution.

This introduction can be followed by problems on a handout, ideally with context then without.

Tagged , , , , ,

Using $10 and $1 Bills to Represent Regrouping in Addition or Subtraction

Money is intuitive for many students, even when the underlying math is not. For example, I often find that students who do not understand well the concept of Base 10 place value do understand $10 and $1 bills. With this in mind, I created a virtual scaffolded handout that builds on student intuitive understanding of the bills through the use of $10 and $1 bills to represent regrouping. Here is a video showing how I use it.

In the photo below, at the top, a $10 bill was borrowed into the ones column. The reason is that $7 needed to be paid (subtracted) but there were only five $1 bills. In the photo below, bottom, the $10 bill was converted into ten $1 bills. On the left side of the handout, the writing on the numbers shows the “mathy” way to write out the borrowing.

Once the student begins work with only the numbers, the $10s and $1s can be referenced when discussing the TENS and ONES places of the numbers. This will allow the student to make a connection between the numbers and their intuitive, concrete representation of the concept.

Tagged , , , , , , , , ,

Base Ten Using Popsicle Sticks

I use the following method as a entry point for double digit numbers.

The photo below shows 2 packs of Popsicle sticks counted as 10 each, followed by single sticks counted as 1 each. The student counts on from 20, with the use of the scaffolded handout (photo at bottom). The handout focuses only on counting on from 20 and shows a photo of 2 of the bundles of sticks. Similar handouts involve counting on from 10 or from 30 etc.

By engaging in the actual counting, the student learns the 10s by doing. This would be followed by counting on from each 10 without the handout.

The use of Popsicle sticks is useful for 2 reasons. First, a bundle of items like shown below is more concrete than the rods for Base 10 blocks. Second, pulling packs of sticks apart of bundling 10 sticks together is an act that is concrete for students and ties into their prior knowledge regarding the grouping of objects (e,g. pack of gum).

Tagged , , , , ,

Information Processing Analogy – Big Picture

Effective instruction is effective because it addresses the key elements of how the brain processes information. I want to share an analogy to help adults (parents and educators) fully appreciate this.

Below is a model of information processing first introduced to me in a master’s course at UCONN.

Here is a summary of what is shown in the model.

  1. Our senses are bombarded by external stimuli: smells, images, sounds, textures and flavors.
  2. We have a filter that allows only some of these stimuli in. We focus on the ones that are most interesting or relevant to us.
  3. Our working memory works to make sense of the stimuli and to package it for storage. Our working memory is like a computer, if there is too much going on, working memory will buffer.
  4. The information will be stored in long term memory.
    • Some will be dropped off in some random location and our brain will forget the location (like losing our keys)
    • Some will be stored in a file cabinet in a drawer with other information just like it. This information is easier to find.

Here is the analogy. You are driving down the street, like the one shown below.

There is a lot of visual stimuli. The priority is for you to pay attention to the arrows for the lanes, the red light and the cars in front of you. You have to process your intended direction and choose the lane.

There is other stimuli that you filter out because it is not pertinent to your task: a car parked off to the right, the herbie curbies (trash bins), the little white arrows at the bottom of the photo. There is extraneous info you may allow to pass through your filter because it catches your eye: the ladder on the right or the cloud formation in the middle.

Maybe you are anxious because you are running late or had a bad experience that you are mulling over. This is using up band width in your working memory. Maybe you are a relatively new driver and simple driving tasks eat up the bandwidth as well.

For students with a disability that impacts processing or attention, the task demands described above are even more challenging. A student with ADHD has a filter that is less effective. A student with autism (a rule follower type) may not understand social settings such as a driver that will run a red light that just turned red. A student with visual processing issues may struggle with picking out the turn arrows.

Effective instruction would address these challenges proactively. Here is a video regarding learning disabilities (LD) that summarizes the need in general for teachers to be highly responsive to student needs. Here is a great video that helps makes sense of what autism in terms of how stimuli can be received by those with autism (look for the street scene). Here is a video of a researcher explaining how ADHD responds to sensory input (he gets to a scenario that effectively encapsulates ADHD).

To address these challenges:

Ironically, this is likely a lot of information for your brain to process…

Tagged , , , , , , , , , , ,

Counting Money as a Game

The Allowance Game is retail game tailored to students who are learning to count money.


I revised it to make it more authentic and more functional.

  • I changed some money amounts to necessitate the use of pennies (see below)
  • I use real dollars and cents to provide more opportunities to handle real money
  • I differentiate by creating different task demands. For example
    • I was using the modified version with 2 clients
    • One was learning to count out dimes and pennies only, but could manage ONES simultaneously
    • This student would also be provided a coin chart I use to teach students how to count with coins
    • The other was practicing with ONES, and all coins up to a quarter
    • I collected data on a data sheet – 1 per student

The students loved playing the game, it was engaging so they practiced the counting out money, I was able to collect data, and I was able to differentiate. When I co-taught a Consumer Math course, I would assign a para (instructional assistant) to facilitate the game with a couple students and to collect data.

Tagged , , , , , , , , , , , ,

Making Sense of Fractions – Regrouping with Mixed Numbers

It is easy to get caught up in the steps and rote memorization when working with fractions. The brain processes information more effectively when the information is meaningful. ADHD makes paying attention to rote memorization of steps even more challenging.

Below is an excerpt of work I completed with a middle school student who has ADHD. This was completed extemporaneously as intervention (you see his initial attempt was incorrect) but can be used as Universal Design in whole class instruction.

Here is a break down of how I helped the student after seeing his mistake in his initial attempt. First, I modeled the first mixed number as pizza pies.

Then I presented the problem in pizza terms. “You have 3 pies and 1 slice and you are going to give me 1 pie and 2 slices. Do you have enough slices?” <wait for response> “You don’t, so what can we do?” <wait for response> “We cut up one of the pies.” I have the student cut the pie into fourths.

I then make the connection with the mixed number and guide the student to taking away 1 pie and writing 4/4. This provides more concrete meaning for writing 1 as 4/4.

In turn, this provides meaning for the new mixed number and meaning for the subtraction of the whole numbers (pies) and the fractions (slices).


Tagged , , , , ,
%d bloggers like this: