# Algebra 1: Concepts and Skills

I had an interesting discussion through a Facebook post recently regarding concepts vs skills. I want to share some information I have gathered regarding this topic. I do so, because there were a substantial number of teachers advocating for skill based learning. I hope to initiate some meaningful discussion.

Below left is a photo of an information processing model presented in a graduate level course on learning I took at UCONN. A key element I want to highlight is that information is more effectively processed if the information is meaningful. A theory behind this is Gestalt Theory in which the brain want to make information meaningful or organize it, e.g., the closure model in which our brains complete the triangle in the middle of the circle portions.

The meaning underlying math skills originates in the concepts. Below are the definitions for both, with the concepts being the “how or why” underlying the skills which are the “what to do” part.

I am not arguing that skills are unimportant or that rote practice is wrong. My position is that the concepts should drive the process. Here is a cartoon I think highlights the challenges with students having only skill based knowledge for topics that have important underlying concepts. I witnessed this first hand as a college adjunct instructor and found that a substantial number of students only understood slope by its formula. I also see a substantial number of students receiving special ed services who are taught at a skill level only to allow for progress. Often this is challenging for them when they have working memory or processing issues.

I will summarize in my own words an interpretation an article I read on the definition of Math, which stated there is no singular definition. The following was a theme that appeared to emerge. Math is a set of quantitative related ideas that can help explain the phenomena and the world. The mathematical symbols are used to represent these ideas. There are different ways to represent these ideas, e.g., we represent functions with tables, graphs, and equations. Formal proofs in Western Civilization are not the same a those in the East. Computer based proofs are not fully accepted by many math experts.

Technology has provided amazing ways to represent mathematical ideas. The most genius approach I have encountered is Dragonbox. The image below shows their initial representation of an equation through their algebra app. It develops the concept and the skills simultaneously.

Below is a list of some algebra 1 topics and some of the associated concepts. These are largely derived from math sources but include some massaging by me. I am happy to hear the working definitions of others.